Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103058, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748881

RESUMO

Three-dimensional (3D) models play an increasingly important role in preclinical drug testing as they faithfully mimic interactions between cancer cells and the tumor microenvironment (TME). Here, we present a protocol for generating scaffold-free 3D multicomponent human melanoma spheroids. We describe steps for characterizing models using live-cell imaging and histology, followed by drug testing and assessment of cell death through various techniques such as imaging, luminescence-based assays, and flow cytometry. Finally, we demonstrate the models' adaptability for co-cultures with immune cells.


Assuntos
Melanoma , Esferoides Celulares , Humanos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Melanoma/patologia , Melanoma/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Microambiente Tumoral , Técnicas de Cocultura/métodos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Técnicas de Cultura de Células/métodos
2.
J Extracell Vesicles ; 12(10): e12363, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759347

RESUMO

Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Melanoma , MicroRNAs , Humanos , Astrócitos , Interleucina-6 , Interleucina-8 , Simulação de Acoplamento Molecular , MicroRNAs/genética , Microambiente Tumoral
3.
Cancer Gene Ther ; 30(10): 1330-1345, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420093

RESUMO

Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.


Assuntos
Insulinas , Melanoma , Humanos , Multiômica , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Insulinas/uso terapêutico , Senescência Celular/genética , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/uso terapêutico
4.
Cell Death Dis ; 14(7): 468, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495601

RESUMO

Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
5.
Cell Rep ; 42(7): 112696, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379213

RESUMO

Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.


Assuntos
Melanoma , Transcriptoma , Humanos , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Purinérgicos P2X7/metabolismo , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
6.
Cancer Treat Rev ; 99: 102238, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34098219

RESUMO

Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.


Assuntos
GTP Fosfo-Hidrolases/genética , Melanoma/genética , Melanoma/terapia , Proteínas de Membrana/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Terapia Combinada , Humanos , Melanoma/enzimologia , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Cutâneas/enzimologia
7.
Cancers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806450

RESUMO

MicroRNAs are key post-transcriptional gene regulators often displaying aberrant expression patterns in cancer. As microRNAs are promising disease-associated biomarkers and modulators of responsiveness to anti-cancer therapies, a solid understanding of their targetome is crucial. Despite enormous research efforts, the success rates of available tools to reliably predict microRNAs (miRNA)-target interactions remains limited. To investigate the disease-associated miRNA targetome, we have applied modified cross-linking ligation and sequencing of hybrids (qCLASH) to BRAF-mutant melanoma cells. The resulting RNA-RNA hybrid molecules provide a comprehensive and unbiased snapshot of direct miRNA-target interactions. The regulatory effects on selected miRNA target genes in predicted vs. non-predicted binding regions was validated by miRNA mimic experiments. Most miRNA-target interactions deviate from the central dogma of miRNA targeting up to 60% interactions occur via non-canonical seed pairing with a strong contribution of the 3' miRNA sequence, and over 50% display a clear bias towards the coding sequence of mRNAs. miRNAs targeting the coding sequence can directly reduce gene expression (miR-34a/CD68), while the majority of non-canonical miRNA interactions appear to have roles beyond target gene suppression (miR-100/AXL). Additionally, non-mRNA targets of miRNAs (lncRNAs) whose interactions mainly occur via non-canonical binding were identified in melanoma. This first application of CLASH sequencing to cancer cells identified over 8 K distinct miRNA-target interactions in melanoma cells. Our data highlight the importance non-canonical interactions, revealing further layers of complexity of post-transcriptional gene regulation in melanoma, thus expanding the pool of miRNA-target interactions, which have so far been omitted in the cancer field.

8.
J Mol Biol ; 432(22): 5902-5919, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32950480

RESUMO

Cytokines orchestrate responses to pathogens and in inflammatory processes, but they also play an important role in cancer by shaping the expression levels of cytokine response genes. Here, we conducted a large profiling study comparing miRNome and mRNA transcriptome data generated following different cytokine stimulations. Transcriptomic responses to STAT1- (IFNγ, IL-27) and STAT3-activating cytokines (IL6, OSM) were systematically compared in nine cancerous and non-neoplastic cell lines of different tissue origins (skin, liver and colon). The largest variation in our datasets was seen between cell lines of the three different tissues rather than stimuli. Notably, the variability in miRNome datasets was a lot more pronounced than in mRNA data. Our data also revealed that cells of skin, liver and colon tissues respond very differently to cytokines and that the cell signaling networks activated or silenced in response to STAT1- or STAT3-activating cytokines are specific to the tissue and the type of cytokine. However, globally, STAT1-activating cytokines had stronger effects than STAT3-inducing cytokines with most significant responses in liver cells, showing more genes upregulated and with higher fold change. A more detailed analysis of gene regulations upon cytokine stimulation in these cells provided insights into STAT1- versus STAT3-driven processes in hepatocarcinogenesis. Finally, independent component analysis revealed interconnected transcriptional networks distinct between cancer cells and their healthy counterparts.


Assuntos
Citocinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon gama/metabolismo , Interleucina-27/metabolismo , Interleucinas , MicroRNAs/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709110

RESUMO

Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk between cancer cells and cells from the tumor microenvironment. This crosstalk is facilitated by small extracellular vesicles (sEVs; diameter between 30 and 200 nm), including exosomes and microvesicles, which carry a cargo of proteins, mRNA, ncRNA and other biological molecules. Hypoxia is known to increase secretion of sEVs and has an impact on the composition of the cargo. This sEV-mediated crosstalk ultimately leads to various biological effects in the proximal tumor microenvironment but also at distant, future metastatic sites. In this review, we discuss the changes induced by hypoxia on sEV secretion and their cargo as well as their effects on the behavior and metabolism of cancer cells, the tumor microenvironment and metastatic events.


Assuntos
Vesículas Extracelulares/patologia , Hipóxia/patologia , Neoplasias/patologia , Animais , Exossomos/metabolismo , Exossomos/patologia , Vesículas Extracelulares/metabolismo , Humanos , Hipóxia/complicações , Hipóxia/metabolismo , Metástase Neoplásica/patologia , Neoplasias/complicações , Neoplasias/metabolismo , Microambiente Tumoral
10.
Cancers (Basel) ; 12(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183388

RESUMO

Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial-mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers.

11.
J Exp Clin Cancer Res ; 38(1): 56, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728057

RESUMO

BACKGROUND: Melanoma is the most aggressive and deadly form of skin cancer with increasing case numbers worldwide. The development of inhibitors targeting mutated BRAF (found in around 60% of melanoma patients) has markedly improved overall survival of patients with late-stage tumors, even more so when combined with MEK inhibitors targeting the same signaling pathway. However, invariably patients become resistant to this targeted therapy resulting in rapid progression with treatment-refractory disease. The purpose of this study was the identification of new kinase inhibitors that do not lead to the development of resistance in combination with BRAF inhibitors (BRAFi), or that could be of clinical benefit as a 2nd line treatment for late-stage melanoma patients that have already developed resistance. METHODS: We have screened a 274-compound kinase inhibitor library in 3 BRAF mutant melanoma cell lines (each one sensitive or made resistant to 2 distinct BRAFi). The screening results were validated by dose-response studies and confirmed the killing efficacies of many kinase inhibitors. Two different tools were applied to investigate and quantify potential synergistic effects of drug combinations: the Chou-Talalay method and the Synergyfinder application. In order to exclude that resistance to the new treatments might occur at later time points, synergistic combinations were administered to fluorescently labelled parental and resistant cells over a period of > 10 weeks. RESULTS: Eight inhibitors targeting Wee1, Checkpoint kinase 1/2, Aurora kinase, MEK, Polo-like kinase, PI3K and Focal adhesion kinase killed melanoma cells synergistically when combined with a BRAFi. Additionally, combination of a Wee1 and Chk inhibitor showed synergistic killing effects not only on sensitive cell lines, but also on intrinsically BRAFi- and treatment induced-resistant melanoma cells. First in vivo studies confirmed these observations. Interestingly, continuous treatment with several of these drugs, alone or in combination, did not lead to emergence of resistance. CONCLUSIONS: Here, we have identified new, previously unexplored (in the framework of BRAFi resistance) inhibitors that have an effect not only on sensitive but also on BRAFi-resistant cells. These promising combinations together with the new immunotherapies could be an important step towards improved 1st and 2nd line treatments for late-stage melanoma patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Melanoma/fisiopatologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bibliotecas de Moléculas Pequenas
12.
Biochim Biophys Acta Rev Cancer ; 1871(2): 313-322, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776401

RESUMO

Melanoma is an aggressive malignancy originating from pigment-producing melanocytes. The development of targeted therapies (MAPK pathway inhibitors) and immunotherapies (immune checkpoint inhibitors) led to a substantial improvement in overall survival of patients. However, the long-term efficacy of such treatments is limited by side effects, lack of clinical effects and the rapidly emerging resistance to treatment. A number of molecular mechanisms underlying this resistant phenotype have already been elucidated. In this review, we summarise currently available treatment options for metastatic melanoma and the known resistance mechanisms to targeted therapies. A focus will be placed on "phenotype switching" as a mechanism and driver of drug resistance, together with an overview of novel approaches to circumvent resistance. A large body of recent data and literature suggests that tumour progression and phenotype switching could be better controlled and development of resistance prevented or at least delayed, by combining drugs targeting fast- and slow-proliferating cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Humanos , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Neoplasias Cutâneas/tratamento farmacológico
13.
J Leukoc Biol ; 104(5): 969-985, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30040142

RESUMO

Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH 1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulation-mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexia-can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.


Assuntos
Antígeno B7-H1/imunologia , Interleucina-6/imunologia , Interleucinas/imunologia , Neoplasias/imunologia , Fator de Transcrição STAT1/imunologia , Evasão Tumoral/imunologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Interleucina-6/antagonistas & inibidores , Transdução de Sinais/imunologia
14.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 2980-2992, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28408301

RESUMO

BACKGROUND: Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. METHODS: To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. RESULTS: Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. CONCLUSION: Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. GENERAL SIGNIFICANCE: Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Assuntos
Melanoma/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/genética , Transcriptoma/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , MicroRNAs/efeitos dos fármacos , Análise em Microsséries , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
15.
Oncotarget ; 7(39): 64342-64359, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27602963

RESUMO

Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Proteínas Ativadoras de GTPase/farmacologia , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Animais , Inibidores de Caspase/farmacologia , Caspases/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Necrose , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Células Vero
16.
Cell Commun Signal ; 14(1): 13, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282631

RESUMO

Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Animais , Humanos
18.
Oncotarget ; 6(14): 12110-27, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25883223

RESUMO

MiRNAs are increasingly recognized as biomarkers for the diagnosis of cancers where they are profiled from tumor tissue (intracellular miRNAs) or serum/plasma samples (extracellular miRNAs). To improve detection of reliable biomarkers from blood samples, we first compiled a healthy reference miRNome and established a well-controlled analysis pipeline allowing for standardized quantification of circulating miRNAs. Using whole miRNome and custom qPCR arrays, miRNA expression profiles were analyzed in 126 serum, whole blood and tissue samples of healthy volunteers and melanoma patients and in primary melanocyte and keratinocyte cell lines. We found characteristic signatures with excellent prognostic scores only in late stage but not in early stage melanoma patients. Upon comparison of melanoma tissue miRNomes with matching serum samples, several miRNAs were identified to be exclusively tissue-derived (miR-30b-5p, miR-374a-5p and others) while others had higher expression levels in serum (miR-3201 and miR-122-5p). Here we have compiled a healthy and widely applicable miRNome from serum samples and we provide strong evidence that levels of cell-free miRNAs only change significantly at later stages of melanoma progression, which has serious implications for miRNA biomarker studies in cancer.


Assuntos
Biomarcadores Tumorais/genética , Melanoma/genética , MicroRNAs/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino
19.
PLoS One ; 8(9): e73473, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039954

RESUMO

The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/genética , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias Cutâneas/genética , Pele/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Pele/metabolismo , Neoplasias Cutâneas/patologia
20.
Cell Commun Signal ; 10(1): 41, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23245396

RESUMO

BACKGROUND: The type-II-cytokine IFN-γ is a pivotal player in innate immune responses but also assumes functions in controlling tumor cell growth by orchestrating cellular responses against neoplastic cells. The role of IFN-γ in melanoma is not fully understood: it is a well-known growth inhibitor of melanoma cells in vitro. On the other hand, IFN-γ may also facilitate melanoma progression. While interferon-regulated genes encoding proteins have been intensively studied since decades, the contribution of miRNAs to effects mediated by interferons is an emerging area of research.We recently described a distinct and dynamic regulation of a whole panel of microRNAs (miRNAs) after IFN-γ-stimulation. The aim of this study was to analyze the transcriptional regulation of miR-29 family members in detail, identify potential interesting target genes and thus further elucidate a potential signaling pathway IFN-γ → Jak→ P-STAT1 → miR-29 → miR-29 target genes and its implication for melanoma growth. RESULTS: Here we show that IFN-γ induces STAT1-dependently a profound up-regulation of the miR-29 primary cluster pri-29a~b-1 in melanoma cell lines. Furthermore, expression levels of pri-29a~b-1 and mature miR-29a and miR-29b were elevated while the pri-29b-2~c cluster was almost undetectable. We observed an inverse correlation between miR-29a/b expression and the proliferation rate of various melanoma cell lines. This finding could be corroborated in cells transfected with either miR-29 mimics or inhibitors. The IFN-γ-induced G1-arrest of melanoma cells involves down-regulation of CDK6, which we proved to be a direct target of miR-29 in these cells. Compared to nevi and normal skin, and metastatic melanoma samples, miR-29a and miR-29b levels were found strikingly elevated in certain patient samples derived from primary melanoma. CONCLUSIONS: Our findings reveal that the miR-29a/b1 cluster is to be included in the group of IFN- and STAT-regulated genes. The up-regulated miR-29 family members may act as effectors of cytokine signalling in melanoma and other cancer cells as well as in the immune system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...