Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell Rep ; 42(10): 113160, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776851

RESUMO

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteoma/metabolismo , Proteína com Valosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Motores/metabolismo , Homeostase , Mutação
2.
Brain Commun ; 5(1): fcad017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793789

RESUMO

Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.

3.
J Neurol ; 270(3): 1770-1773, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36472686

RESUMO

BACKGROUND: The dose-effect of various SOD1 mutations on SOD1 enzymatic activity offers valuable insights into ALS pathogenesis with possible therapeutic implications. Homozygous SOD1 mutations, yet scarce, are of special interest. We report a novel homozygous SOD1 mutation with decreased enzymatic activity and severe early onset ALS phenotype. METHODS: Whole exome sequencing and targeted screening of commonly implicated genes were conducted. Repeat-primed PCR and fragment length analysis were used for C9orf72. Bi-directional Sanger sequencing was used for SOD1 and other genes. SOD1 activity was measured by direct spectrophotometry. Serum neurofilament light chain level was measured by the ELLA immunoassay system. RESULTS: The homozygous patient for a novel SOD1 variant p.Ser69Pro showed poor SOD1 enzymatic activity (16% of controls) and an early onset ALS phenotype predominantly affecting lower motor neurons with rapid involvement of the trunk, upper limbs and bulbar muscles. The asymptomatic heterozygous relatives had at least 68% of normal enzyme activity. Level of serum neurofilament light chain was much higher (148 pg/ml) in the patient than the relatives who had normal levels (6-10 pg/ml). CONCLUSION: This novel mutation adds knowledge to the ALS genotype-phenotype spectrum and supports the strong dose-effect of SOD1 mutations associated with severely decreased enzymatic activity.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/diagnóstico , Mutação , Homozigoto , Neurônios Motores , Superóxido Dismutase/genética
4.
Acta Neuropathol ; 145(1): 13-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385230

RESUMO

Mutations in the gene encoding the ubiquitously expressed free radical scavenging enzyme superoxide dismutase-1 (SOD1) are found in 2-6% of amyotrophic lateral sclerosis patients. The most frequent SOD1 mutation worldwide is D90A. Amyotrophic lateral sclerosis caused by this mutation has some unusual features: the heredity is usually recessive, the phenotype is stereotypic with slowly evolving motor symptoms beginning in the legs and may also include sensory, autonomic, and urinary bladder involvement. Furthermore, the mutant protein resembles the wild type, with normal content and enzymatic activity in the central nervous system. Here, we report neuropathological findings in nine patients homozygous for the D90A mutation. All nine had numerous small granular inclusions immunoreactive for misfolded SOD1 in motor neurons and glial nuclei in the spinal cord and brainstem. In addition to degeneration of the corticospinal tracts, all patients had degeneration of the dorsal columns. We also found intense gliosis in circumscribed cortical areas of the frontal and temporal lobes and in the insula. In these areas and in adjacent white matter, there were SOD1 staining neuropil threads. A few SOD1-immunopositive cytoplasmic neuronal inclusions were observed in cortical areas, as were glial nuclear inclusions. As suggested by the symptoms and signs and earlier neurophysiological and imaging investigations, the histopathology in patients homozygous for the D90A SOD1 extends beyond the motor system to include cognitive and sensory cortical areas. However, even in the patients that had a symptomatic disease duration of more than 2 or 3 decades and lived into their 70s or 80s, there were no SOD1-inclusion pathology and no typical dysfunction (apart from the musculature) in non-nervous organs. Thus, only specific parts of the CNS seem to be vulnerable to toxicity provoked by homozygously expressed mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sistema Nervoso Central/patologia , Neurônios Motores/metabolismo , Mutação/genética , Tratos Piramidais/metabolismo
5.
J Neurochem ; 164(1): 77-93, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326589

RESUMO

Mutations in the human Superoxide dismutase 1 (hSOD1) gene are well-established cause of the motor neuron disease ALS. Patients and transgenic (Tg) ALS model mice carrying mutant variants develop hSOD1 aggregates in the CNS. We have identified two hSOD1 aggregate strains, which both transmit spreading template-directed aggregation and premature fatal paralysis when inoculated into adult transgenic mice. This prion-like spread of aggregation could be a primary disease mechanism in SOD1-induced ALS. Human SOD1 aggregation has been studied extensively both in cultured cells and under various conditions in vitro. To determine how the structure of aggregates formed in these model systems related to disease-associated aggregates in the CNS, we used a binary epitope-mapping assay to examine aggregates of hSOD1 variants G93A, G85R, A4V, D90A, and G127X formed in vitro, in four different cell lines and in the CNS of Tg mice. We found considerable variability between replicate sets of in vitro-generated aggregates. In contrast, there was a high similarity between replicates of a given hSOD1 mutant in a given cell line, but pronounced variations between different hSOD1 mutants and different cell lines in both structures and amounts of aggregates formed. The aggregates formed in vitro or in cultured cells did not replicate the aggregate strains that arise in the CNS. Our findings suggest that the distinct aggregate morphologies in the CNS could result from a micro-environment with stringent quality control combined with second-order selection by spreading ability. Explorations of pathogenesis and development of therapeutics should be conducted in models that replicate aggregate structures forming in the CNS.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Humanos , Animais , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Células Cultivadas , Mutação/genética , Modelos Animais de Doenças
6.
Cells ; 11(7)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406813

RESUMO

Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
Brain ; 145(3): 872-878, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34788402

RESUMO

Pathogenic variants in SOD1, encoding superoxide dismutase 1, are responsible for about 20% of all familial amyotrophic lateral sclerosis cases, through a gain-of-function mechanism. Recently, two reports showed that a specific homozygous SOD1 loss-of-function variant is associated with an infantile progressive motor-neurological syndrome. Exome sequencing followed by molecular studies, including cDNA analysis, SOD1 protein levels and enzymatic activity, and plasma neurofilament light chain levels, were undertaken in an infant with severe global developmental delay, axial hypotonia and limb spasticity. We identified a homozygous 3-bp in-frame deletion in SOD1. cDNA analysis predicted the loss of a single valine residue from a tandem pair (p.Val119/Val120) in the wild-type protein, yet expression levels and splicing were preserved. Analysis of SOD1 activity and protein levels in erythrocyte lysates showed essentially no enzymatic activity and undetectable SOD1 protein in the child, whereas the parents had ∼50% protein expression and activity relative to controls. Neurofilament light chain levels in plasma were elevated, implying ongoing axonal injury and neurodegeneration. Thus, we provide confirmatory evidence of a second biallelic variant in an infant with a severe neurological syndrome and suggest that the in-frame deletion causes instability and subsequent degeneration of SOD1. We highlight the importance of the valine residues at positions V119-120, and suggest possible implications for future therapeutics research.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , DNA Complementar , Humanos , Lactente , Mutação/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Síndrome , Valina/genética
8.
Acta Neuropathol Commun ; 9(1): 111, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158126

RESUMO

The deposition of aggregated proteins is a common neuropathological denominator for neurodegenerative disorders. Experimental evidence suggests that disease propagation involves prion-like mechanisms that cause the spreading of template-directed aggregation of specific disease-associated proteins. In transgenic (Tg) mouse models of superoxide dismutase-1 (SOD1)-linked amyotrophic lateral sclerosis (ALS), inoculation of minute amounts of human SOD1 (hSOD1) aggregates into the spinal cord or peripheral nerves induces premature ALS-like disease and template-directed hSOD1 aggregation that spreads along the neuroaxis. This infectious nature of spreading pathogenic aggregates might have implications for the safety of laboratory and medical staff, recipients of donated blood or tissue, or possibly close relatives and caregivers. Here we investigate whether transmission of ALS-like disease is unique to the spinal cord and peripheral nerve inoculations or if hSOD1 aggregation might spread from the periphery into the central nervous system (CNS). We inoculated hSOD1 aggregate seeds into the peritoneal cavity, hindlimb skeletal muscle or spinal cord of adult Tg mice expressing mutant hSOD1. Although we used up to 8000 times higher dose-compared to the lowest dose transmitting disease in spinal cord inoculations-the peripheral inoculations did not transmit seeded aggregation to the CNS or premature ALS-like disease in hSOD1 Tg mice. Nor was any hSOD1 aggregation detected in the liver, kidney, skeletal muscle or sciatic nerve. To explore potential reasons for the lack of disease transmission, we examined the stability of hSOD1 aggregates and found them to be highly vulnerable to both proteases and detergent. Our findings suggest that exposed individuals and personnel handling samples from ALS patients are at low risk of any potential transmission of seeded hSOD1 aggregation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Agregação Patológica de Proteínas/patologia , Superóxido Dismutase-1 , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Acta Neuropathol Commun ; 8(1): 161, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928301

RESUMO

Increasing evidence suggests that propagation of the motor neuron disease amyotrophic lateral sclerosis (ALS) involves the pathogenic aggregation of disease-associated proteins that spread in a prion-like manner. We have identified two aggregate strains of human superoxide dismutase 1 (hSOD1) that arise in the CNS of transgenic mouse models of SOD1-mediated ALS. Both strains transmit template-directed aggregation and premature fatal paralysis when inoculated into the spinal cord of adult hSOD1 transgenic mice. This spread of pathogenic aggregation could be a potential target for immunotherapeutic intervention. Here we generated mouse monoclonal antibodies (mAbs) directed to exposed epitopes in hSOD1 aggregate strains and identified an aggregate selective mAb that targets the aa 143-153 C-terminal extremity of hSOD1 (αSOD1143-153). Both pre-incubation of seeds with αSOD1143-153 prior to inoculation, and weekly intraperitoneal (i.p.) administration attenuated transmission of pathogenic aggregation and prolonged the survival of seed-inoculated hSOD1G85R Tg mice. In contrast, administration of a mAb targeting aa 65-72 (αSOD165-72), which exhibits high affinity towards monomeric disordered hSOD1, had an adverse effect and aggravated seed induced premature ALS-like disease. Although the mAbs reached similar concentrations in CSF, only αSOD1143-153 was found in association with aggregated hSOD1 in spinal cord homogenates. Our results suggest that an aggregate-selective immunotherapeutic approach may suppress seeded transmission of pathogenic aggregation in ALS. However, long-term administration of αSOD1143-153 was unable to prolong the lifespan of non-inoculated hSOD1G85R Tg mice. Thus, spontaneously initiated hSOD1 aggregation in spinal motor neurons may be poorly accessible to therapeutic antibodies.


Assuntos
Esclerose Lateral Amiotrófica , Anticorpos Monoclonais/farmacologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Superóxido Dismutase-1/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos
11.
Yakugaku Zasshi ; 139(7): 1015-1019, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31257248

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that is characterized by the loss of motor neurons, which results in progressive muscle atrophy. The pathology spreads from the initial site of onset to contiguous anatomic regions. Mutations in the gene encoding Cu/Zn-superoxide dismutase (SOD1) have been identified in a dominantly inherited form of ALS (ALS-SOD1). A major hallmark of ALS-SOD1 is the abnormal accumulation of conformationally aberrant SOD1 protein (i.e., misfolded SOD1) within motor neurons. Emerging experimental evidence has suggested that misfolded proteins associated with neurodegenerative diseases exhibit prion-like properties, i.e., misfolded proteins act as conformational templates that convert normal proteins into a pathogenic form. Possibly as a result of this prion-like self-propagation property, misfolded forms of pathological proteins are considered to accumulate in the central nervous system and cause neurodegeneration. In this article, we review recent evidence for the role of prion-like mechanisms in ALS-SOD1. In particular, we discuss the propensity of misfolded SOD1 to act as a pathological seed, spread between cells, and propagate neuroanatomically.


Assuntos
Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase-1/genética , Humanos , Neurônios Motores/metabolismo , Mutação , Príons , Agregação Patológica de Proteínas , Dobramento de Proteína , Superóxido Dismutase-1/metabolismo
12.
Acta Neuropathol ; 138(1): 85-101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30863976

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Fibroblastos/patologia , Neurônios Motores/patologia , Oxigênio/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Fibroblastos/metabolismo , Humanos , Mutação/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
13.
Clin Mass Spectrom ; 11: 37-41, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841071

RESUMO

Phosphatidylethanol (PEth) is a recently introduced biomarker with high specificity, high sensitivity, and response correlating with alcohol consumption. It has the potential to be a valuable biomarker in population studies on the health effects of alcohol, however its stability in long-term stored blood is not known. We used LC-MS/MS to assess the stability of PEth-16:0/18:1 in blood samples (packed erythrocytes) that were stored between 1 and 19 years at -80 °C in a biobank from a large population survey. The participants answered a life-style questionnaire that included questions on alcohol consumption. For analysis, we selected blood samples from seven homogenous ethanol consumption cohorts collected at intervals from 1997 to 2015. Despite the narrow stated alcohol consumption range, 10-15 g/day, there were large differences in PEth values between individuals in the cohorts, from below the limit of detection of 0.005 µmol/L to 1.40 µmol/L. The median was 0.08 µmol/L. Neither generalized linear modeling, nor principal component analysis revealed a statistically significant association between time of storage and PEth levels. The PEth results indicate that the participants had, on average, under-reported their alcohol consumption several-fold. The findings suggest that PEth in blood has a sufficient long-term stability for use as an alcohol biomarker in prospective case-control studies. Analysis of blood stored in biobanks could significantly improve the validity of assessments exploring the health effects of alcohol.

14.
Acta Neuropathol ; 136(6): 939-953, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30284034

RESUMO

Motor neurons containing aggregates of superoxide dismutase 1 (SOD1) are hallmarks of amyotrophic lateral sclerosis (ALS) caused by mutations in the gene encoding SOD1. We have previously reported that two strains of mutant human (h) SOD1 aggregates (denoted A and B) can arise in hSOD1-transgenic models for ALS and that inoculation of such aggregates into the lumbar spinal cord of mice results in rostrally spreading, templated hSOD1 aggregation and premature fatal ALS-like disease. Here, we explored whether mutant hSOD1 aggregates with prion-like properties also exist in human ALS. Aggregate seeds were prepared from spinal cords from an ALS patient carrying the hSOD1G127Gfs*7 truncation mutation and from mice transgenic for the same mutation. To separate from mono-, di- or any oligomeric hSOD1 species, the seed preparation protocol included ultracentrifugation through a density cushion. The core structure of hSOD1G127Gfs*7 aggregates present in mice was strain A-like. Inoculation of the patient- or mouse-derived seeds into lumbar spinal cord of adult hSOD1-expressing mice induced strain A aggregation propagating along the neuraxis and premature fatal ALS-like disease (p < 0.0001). Inoculation of human or murine control seeds had no effect. The potencies of the ALS patient-derived seed preparations were high and disease was initiated in the transgenic mice by levels of hSOD1G127Gfs*7 aggregates much lower than those found in the motor system of patients carrying the mutation. The results suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism, not only in hSOD1 transgenic rodent models, but also in human ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Mutação/genética , Agregados Proteicos/fisiologia , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Idoso , Animais , Mapeamento de Epitopos , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Medula Espinal/patologia , Superóxido Dismutase/química
15.
Sci Rep ; 8(1): 14223, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242181

RESUMO

Aggregation of mutant superoxide dismutase 1 (SOD1) is a pathological hallmark of a subset of familial ALS patients. However, the possible role of misfolded wild type SOD1 in human ALS is highly debated. To ascertain whether or not misfolded SOD1 is a common pathological feature in non-SOD1 ALS, we performed a blinded histological and biochemical analysis of post mortem brain and spinal cord tissues from 19 sporadic ALS, compared with a SOD1 A4V patient as well as Alzheimer's disease (AD) and non-neurological controls. Multiple conformation- or misfolded-specific antibodies for human SOD1 were compared. These were generated independently by different research groups and were compared using standardized conditions. Five different misSOD1 staining patterns were found consistently in tissue sections from SALS cases and the SOD1 A4V patient, but were essentially absent in AD and non-neurological controls. We have established clear experimental protocols and provide specific guidelines for working, with conformational/misfolded SOD1-specific antibodies. Adherence to these guidelines will aid in the comparison of the results of future studies and better interpretation of staining patterns. This blinded, standardized and unbiased approach provides further support for a possible pathological role of misSOD1 in SALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Idoso , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Dobramento de Proteína , Medula Espinal/metabolismo
16.
Neurobiol Aging ; 72: 189.e11-189.e17, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30236613

RESUMO

We report an apparently sporadic amyotrophic lateral sclerosis patient carrying a heterozygous novel frameshift SOD1 mutation (p.Ser108LeufsTer15), predicted to cause a premature protein truncation. RT-PCR analysis of SOD1 mRNA and SDS-PAGE/Western blot analysis of PBMC demonstrated that mRNA from the mutant allele is expressed at levels similar to those of the wild-type allele, but the truncated protein is undetectable also in the insoluble fraction and after proteasome inhibition. Accordingly, the dismutation activity in erythrocytes is halved. Thus, the pathogenic mechanism associated with this mutation might be based on an insufficient activity of SOD1 that would make motor neurons more vulnerable to oxidative injury. However, it cannot be excluded that p.Ser108LeufsTer15 SOD1 is present in the nervous tissue and, being less charged and hence having less repulsive forces than the wild-type protein, may trigger toxic mechanisms as a consequence of its propensity to aggregate.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase-1/genética , Idoso , Feminino , Mutação da Fase de Leitura , Humanos
17.
Ann Neurol ; 81(6): 837-848, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28480639

RESUMO

OBJECTIVE: Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1-transgenic animal models. Pyrimethamine produces dose-dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). METHODS: A multicenter (5 sites), open-label, 9-month-duration, dose-ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale-Revised, and McGill Quality of Life Single-Item Scale were measured at screening, visit 6, and visit 9. RESULTS: We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4-18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2-15.8). INTERPRETATION: Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long-term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837-848.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Pirimetamina/farmacologia , Índice de Gravidade de Doença , Superóxido Dismutase-1/líquido cefalorraquidiano , Superóxido Dismutase-1/efeitos dos fármacos , Adulto , Idoso , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Feminino , Antagonistas do Ácido Fólico/efeitos adversos , Antagonistas do Ácido Fólico/sangue , Antagonistas do Ácido Fólico/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Pirimetamina/efeitos adversos , Pirimetamina/sangue , Pirimetamina/líquido cefalorraquidiano , Superóxido Dismutase-1/genética , Resultado do Tratamento , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-28325066

RESUMO

OBJECTIVE: To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. METHODS: Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. RESULTS: Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72HRE. In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. CONCLUSION: Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase-1/sangue , Superóxido Dismutase-1/genética , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Estudos de Coortes , Ativação Enzimática/fisiologia , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
J Clin Invest ; 126(6): 2249-53, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140399

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset degeneration of motor neurons that is commonly caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Both patients and Tg mice expressing mutant human SOD1 (hSOD1) develop aggregates of unknown importance. In Tg mice, 2 different strains of hSOD1 aggregates (denoted A and B) can arise; however, the role of these aggregates in disease pathogenesis has not been fully characterized. Here, minute amounts of strain A and B hSOD1 aggregate seeds that were prepared by centrifugation through a density cushion were inoculated into lumbar spinal cords of 100-day-old mice carrying a human SOD1 Tg. Mice seeded with A or B aggregates developed premature signs of ALS and became terminally ill after approximately 100 days, which is 200 days earlier than for mice that had not been inoculated or were given a control preparation. Concomitantly, exponentially growing strain A and B hSOD1 aggregations propagated rostrally throughout the spinal cord and brainstem. The phenotypes provoked by the A and B strains differed regarding progression rates, distribution, end-stage aggregate levels, and histopathology. Together, our data indicate that the aggregate strains are prions that transmit a templated, spreading aggregation of hSOD1, resulting in a fatal ALS-like disease.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Proteínas Mutantes/genética , Príons/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas Mutantes/química , Príons/química , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-27002425

RESUMO

Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50 bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50 bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50 bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50 bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.


Assuntos
Esclerose Lateral Amiotrófica , Polimorfismo Genético/genética , Deleção de Sequência/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Análise de Variância , Estudos de Coortes , Eritrócitos/enzimologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Suécia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA