Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(29): 9088-9095, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979827

RESUMO

Hydrogels consist of three-dimensional (3D) and complicated polymer networks that determine their physical properties. Among the methods for structural analyses of hydrogels, the real-space imaging of a polymer network of hydrogels on a nanometer scale is one of the optimal methods; however, it is highly challenging. In this study, we propose a direct observation method for cationic polymer networks using transmission electron microscopy (TEM). By combining the double network strategy and the mineral staining technique, we overcame the challenges of polymer aggregation and the low electron density of the polymer. An objective cationic network was incorporated into a neutral skeleton network to suppress shrinkage during subsequent staining. Titania mineralization along the cationic polymer strands provided sufficient electron density for the objective polymer network for TEM observation. This observation method enables the visualization of local structures in real space and plays a complementary role to scattering methods for soft matter structure analysis.

2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768972

RESUMO

The practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses. Conductive polymers (CPs) offer ease of modification that allows for tailoring the scaffold's various properties, making them an attractive option for conductive component in electroactive scaffolds. This review provides an up-to-date narrative of the progress of CPs-based electroactive scaffolds and the challenge of their use in various tissue engineering applications from biomaterials perspectives. The general issues with CP-based scaffolds relevant to its application as electroactive scaffolds were discussed, followed by a more specific discussion in their applications for specific tissues, including bone, nerve, skin, skeletal muscle and cardiac muscle scaffolds. Furthermore, this review also highlighted the importance of the manufacturing process relative to the scaffold's performance, with particular emphasis on additive manufacturing, and various strategies to overcome the CPs' limitations in the development of electroactive scaffolds.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Implantes Absorvíveis , Fenômenos Biomecânicos , Adesão Celular , Proliferação de Células , Condutividade Elétrica , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/tendências , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Especificidade de Órgãos , Polímeros/química , Impressão Tridimensional , Engenharia Tecidual/tendências
3.
RSC Adv ; 10(70): 42838-42859, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514924

RESUMO

Zinc oxide (ZnO) has been considered as one of the potential materials in solar cell applications, owing to its relatively high conductivity, electron mobility, stability against photo-corrosion and availability at low-cost. Different structures of ZnO materials have been engineered at the nanoscale, and then applied on the conducting substrate as a photoanode. On the other hand, the ZnO nanomaterials directly grown on the substrate have been attractive due to their unique electron pathways, which suppress the influence of surface states typically found in the former case. Herein, we review the recent progress of ZnO nanostructured materials in emerging solar cell applications, such as sensitized and heterojunction architectures, including those embedded with promising perovskite materials. The remarkable advancement in each solar cell architecture is highlighted towards achieving high power conversion efficiency and operational stability. We also discuss the foremost bottleneck for further improvements and the future outlook for large-scale practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...