Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 549: 76-83, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38734304

RESUMO

Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. Male Sprague-Dawley rats (n = 36) were divided into four groups: saline (pMCAO - Saline), CBL (pMCAO + CBL), NAM (pMCAO + NAM), and experimental (pMCAO + CBL-NAM) (n = 9 per group). A permanent middle cerebral artery occlusion (pMCAO) was induced through electrocauterization of the middle cerebral artery, followed by the administration of CBL (2.5 ml/kg), NAM (500 mg/kg) or combined immediately after skin suture, as well as at 24, 48, and 72 h post-surgery. The rats were evaluated in the novel object recognition test; hippocampal infarct area measurement; reconstruction of neurons from CA1 for Sholl analysis; and, measurement of brain-derived neurotrophic factor (BDNF) levels near the infarct zone. Our findings revealed that the administration of CBL or NAM induced infarct reduction, improved cognition, and increased BDNF levels. Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.


Assuntos
Aminoácidos , Cognição , Hipocampo , Infarto da Artéria Cerebral Média , Neurônios , Fármacos Neuroprotetores , Niacinamida , Ratos Sprague-Dawley , Animais , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Aminoácidos/farmacologia , Aminoácidos/administração & dosagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Cognição/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Quimioterapia Combinada , Modelos Animais de Doenças
2.
Brain Res ; 1825: 148694, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048977

RESUMO

Stroke is a pathology related to the vascular system in the brain and it is one of the main causes of disability, representing a burden on public health. This lesion provokes a disorganization of sensory-motor and cognitive systems, the latter associated with hippocampal activity, a structure in which α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA N-methyl-D-aspartate (NMDA) receptors are important for the integration of information. Several molecules have been studied for their capacity to enhance recovery from a stroke, including cerebrolysin that could potentially be reinforced by environmental enrichment. Here, stroke was induced in 40 male rats and 24 h later, they were administered cerebrolysin (2.5 ml/kg), put in an environmentally enriched arena or given both treatments, for 10 days. Subsequently, motor functioning was assessed with the Bederson test and the cognitive domain was assessed through novel object recognition. Hematoxylin/eosin staining was then used to assess the infarct size, and AMPA-GRIA1 and NMDA-R1 subunits in the hippocampus were measured by ELISA. In motor and cognitive performance, the administration of cerebrolysin and environmental enrichment enhanced recovery. Moreover, the infarct size decreased in all the groups that received a treatment, but an increase occurred in AMPA-GRIA1 only in experimental group regarding to control group, while NMDA-R1 had no differences. These results suggest that cerebrolysin and environmental enrichment could act in synergy to recover after a stroke, leading to a smaller infarct area and the presence of more AMPA-GRIA1 subunits in the hippocampus of experimental group. These data encourage further studies in which neurorehabilitation approaches can be combined with cerebrolysin administration to treat the motor and cognitive symptoms of stroke.


Assuntos
Aminoácidos , N-Metilaspartato , Acidente Vascular Cerebral , Ratos , Animais , Masculino , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , N-Metilaspartato/farmacologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Infarto , Cognição
3.
J Chem Neuroanat ; 125: 102159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087877

RESUMO

Lesions to the corticospinal tract result in several neurological symptoms and several rehabilitation protocols have proven useful in attempts to direct underlying plastic phenomena. However, the effects that such protocols may exert on the dendritic spines of motoneurons to enhance accuracy during rehabilitation are unknown. Thirty three female Sprague-Dawley adult rats were injected stereotaxically at the primary motor cerebral cortex (Fr1) with saline (CTL), or kainic acid (INJ), or kainic acid and further rehabilitation on a treadmill 16 days after lesion (INJ+RB). Motor performance was evaluated with the the Basso, Beatie and Bresnahan (BBB) locomotion scale and in the Rotarod. Spine density was quantified in a primary dendrite of motoneurons in Lamina IX in the ventral horn of the thoracolumbar spinal cord as well as spine morphology. AMPA, BDNF, PSD-95 and synaptophysin expression was evaluated by Western blot. INJ+RB group showed higher scores in motor performance. Animals from the INJ+RB group showed more thin, mushroom, stubby and wide spines than the CTL group, while the content of AMPA, BDNF, PSD-95 and Synaptophysin was not different between the groups INJ+RB and CTL. AMPA and synaptophysin content was greater in INJ group than in CTL and INJ+RB groups. The increase in the proportion of each type of spine observed in INJ+RB group suggest spinogenesis and a greater capability to integrate the afferent information to motoneurons under relatively stable molecular conditions at the synaptic level.


Assuntos
Córtex Motor , Animais , Feminino , Ratos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/fisiologia , Ácido Caínico , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Ratos Sprague-Dawley
4.
Eur J Pharmacol ; 896: 173883, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513334

RESUMO

The lesions induced by Ibotenic acid (IA) emulate some of the symptoms associated with schizophrenia, such as impaired working memory that is predominantly organized by the medial prefrontal cortex (mPFC), or difficulties in social interactions that aremainly organized by the amygdala (AMG). The plastic capacity of dendritic spines in neurons of the mPFC and AMG is modulated by molecules that participate in the known deterioration of working memory, although the influence of these on the socialization of schizophrenic patients is unknown. Here, the effect of a neonatal IA induced lesion on social behavior and working memory was evaluated in adult rats, along with the changes in cytoarchitecture of dendritic spines and their protein content, specifically the postsynaptic density protein 95 (PSD-95), Synaptophysin (Syn), AMPA receptors, and brain-derived neurotrophic factor (BDNF). Both working memory and social behavior were impaired, and the density of the spines, as well as their PSD-95, Syn, AMPA receptor and BDNF content was lower in IA lesioned animals. The proportional density of thin, mushroom, stubby and wide spines resulted in plastic changes that suggest the activation of compensatory processes in the face of the adverse effects of the lesion. In addition, the reduction in the levels of the modulating factors also suggests that the signaling pathways in which such factors are implicated would be altered in the brains of patients with schizophrenia. Accordingly, the experimental study of such signaling pathways is likely to aid the development of more effective pharmacological strategies for the treatment of schizophrenia.


Assuntos
Tonsila do Cerebelo/patologia , Comportamento Animal , Espinhas Dendríticas/patologia , Plasticidade Neuronal , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Psicologia do Esquizofrênico , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Ácido Ibotênico , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Comportamento Social , Sinaptofisina/metabolismo
5.
Neurobiol Learn Mem ; 172: 107247, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32416137

RESUMO

Spatial learning and memory enables individuals to orientate themselves in an external environment. Synaptic stimulation of dendritic spines on hippocampal place cells underlies adaptive cognitive performance, inducing plastic changes such as spinogenesis, pruning and structural interconversion. Such plastic changes are driven by complex molecular machinery that relies on several actin cytoskeleton-associated proteins (ACAP's), these interacting with actin filaments in the postsynaptic density to guide the conformational changes to spines in accordance with the synaptic information they receive. However, the specific dynamics of the plastic changes in spines driven by ACAP's are poorly understood. Adult rats exhibit efficient allocentric reference memory 30 days after training in a spatial learning paradigm in the Morris water maze. A Golgi study revealed this behavior to be associated with a reduction in both spine density and in mushroom spines, as well as a concomitant increase in thin spines. These changes were accompanied by the overexpression of mRNA encoding ß-actin, Spinophilin and Cortactin, whilst the expression of Profilin, α-actinin, Drebrin, Synaptopodin and Myosin decreased. By contrast, no changes were evident in Cofilin, Gelsolin and Arp2/3 mRNA. From this analysis, it appears that neither spinogenesis nor new mushroom spines are necessary for long-term spatial information retrieval, while thin spines could be potentiated to retrieve pre-learned spatial information. Further studies that focus on the signaling pathways and their related molecules may shed further light on the molecular dynamics of the plastic changes to dendritic spines that underlie cognitive performance, both under normal and pathological conditions.


Assuntos
Região CA1 Hipocampal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Espinhas Dendríticas/fisiologia , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal , Animais , Masculino , Ratos Sprague-Dawley , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia
6.
Pharmacol Biochem Behav ; 175: 116-122, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267796

RESUMO

Attention Deficit Hyperactivity Disorder (ADHD) causes impaired visuospatial working memory (VWM), which primarily maps to the prefrontal cortex. However, little is known about the synaptic processes underlying cognitive loss in ADHD, or those ultimately involved in the preventive effect observed through the clinical use of Atomoxetine (ATX). To investigate the plasticity underlying ADHD related cognitive loss, and that potentially involved in the preventive action of Atomoxetine, allocentric VWM was assessed, as well as the dendritic spine number and proportional density on pyramidal neurons in the prefrontal cerebral cortex layer III of neonatal 6-hydroxydopamine-lesioned rats. The effect of acute ATX treatment was also assessed at 28 days of age. 6-OHDA induced lesions produced increased motor activity and a loss of VWM, concomitant with a reduction in thin spine density. ATX administration reversed cognitive loss, in conjunction with a decrease in thin spines and an increase in mushroom spines. A reduction in the proportion of spines involved in learning in hyperactive animals could account for the loss in cognitive function observed. Considering thin spine density was also reduced after ATX administration, we hypothesized that the restoration in cognitive function recorded could be brought about by an increase in memory related mushroom spines.


Assuntos
Cloridrato de Atomoxetina/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Animais , Feminino , Masculino , Córtex Pré-Frontal/citologia , Ratos , Ratos Sprague-Dawley
7.
Neurosci Lett ; 657: 27-31, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28760460

RESUMO

Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity.


Assuntos
Espinhas Dendríticas/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Animais , Masculino , Córtex Motor/citologia , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Coloração pela Prata
8.
Arch Med Res ; 48(7): 609-615, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29530339

RESUMO

BACKGROUND: Spinal cord injury (SCI) is highly incapacitating, and the neurobiological factors involved in an eventual functional recovery remain uncertain. Plastic changes to dendritic spines are closely related with the functional modifications of behavior. AIM OF THE STUDY: To explore the plastic response of dendritic spines in motoneurons after SCI. METHODS: Female rats were assigned to either of three groups: Intact (no manipulations), Sham (T9 laminectomy), and SCI (T9 laminectomy and spinal cord contusion). RESULTS: Motor function according to a BBBscale was progressively recovered from 2 week through 8 week postinjury, reaching a plateau through week 16. Dendritic spine density was greater in SCI vs. control groups, rostral as well as caudal to the lesion, at 8 and 16 weeks postinjury. Thin and stubby/wide spines were more abundant at both locations and time points, whereas mushroom spines predominated at 2 and 4 months in rostral to the lesion. Filopodia and atypical structures resembling dendritic spines were observed. Synaptophysin expression was lower in SCI at the caudal portion at 8 weeks, and was higher at week 16. CONCLUSION: Spinogenesis in spinal motoneurons may be a crucial plastic response to favor spontaneous recovery after SCI.


Assuntos
Espinhas Dendríticas/fisiologia , Neurônios Motores/fisiologia , Plasticidade Neuronal , Traumatismos da Medula Espinal/fisiopatologia , Cicatrização/fisiologia , Animais , Feminino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Vértebras Torácicas
9.
Behav Brain Res ; 298(Pt B): 261-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26589803

RESUMO

The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.


Assuntos
Espinhas Dendríticas/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Masculino , Plasticidade Neuronal , Fotomicrografia , Córtex Pré-Frontal/citologia , Células Piramidais/citologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...