Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37530695

RESUMO

OBJECTIVES: Low-intensity, focused ultrasound (FUS) is an emerging noninvasive neuromodulation approach, with improved spatial and temporal resolution and penetration depth compared to other noninvasive electrical stimulation strategies. FUS has been used to modulate circuits in the brain and the peripheral nervous system, however, its potential to modulate spinal circuits is unclear. In this study, we assessed the effect of trans-spinal FUS (tsFUS) on spinal reflexes in healthy rats. MATERIALS AND METHODS: tsFUS targeting different spinal segments was delivered for 1 minute, under anesthesia. Monosynaptic H-reflex of the sciatic nerve, polysynaptic flexor reflex of the sural nerve, and withdrawal reflex tested with a hot plate were measured before, during, and after tsFUS. RESULTS: tsFUS reversibly suppresses the H-reflex in a spinal segment-, acoustic pressure- and pulse-repetition frequency (PRF)-dependent manner. tsFUS with high PRF augments the degree of homosynaptic depression of the H-reflex observed with paired stimuli. It suppresses the windup of components of the flexor reflex associated with slower, C-afferent, but not faster, A- afferent fibers. Finally, it increases the latency of the withdrawal reflex. tsFUS does not elicit neuronal loss in the spinal cord. CONCLUSIONS: Our study provides evidence that tsFUS reversibly suppresses spinal reflexes and suggests that tsFUS could be a safe and effective strategy for spinal cord neuromodulation in disorders associated with hyperreflexia, including spasticity after spinal cord injury and painful syndromes.

2.
3.
Brain Stimul ; 16(3): 759-771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37094762

RESUMO

BACKGROUND: Neural activity helps construct neural circuits during development and this function is leveraged by neuromodulation protocols to promote connectivity and repair in maturity. Neuromodulation targeting the motor cortex (MCX) strengthens connections for evoking muscle contraction (MEPs). Mechanisms include promoting local MCX and corticospinal tract (CST) synaptic efficacy and also axon terminal structural changes. OBJECTIVE: In this study, we address the question of potential causality between neuronal activation and the neuronal structural response. METHODS: We used patterned optogenetic activation (ChR2-EYFP), daily for 10-days, to deliver intermittent theta burst stimulation (iTBS) to activate MCX neurons within the forelimb representation in healthy rats, while differentiating them from neurons in the same population that were not activated. We used chemogenetic DREADD activation to produce a daily period of non-patterned neuronal activation. RESULTS: We found a significant increase in CST axon length, axon branching, contacts targeted to a class of premotor interneuron (Chx10), as well as projections into the motor pools in the ventral horn in optically activated but not neighboring non-activated neurons. A period of 2-h of continuous activation daily for 10 days using DREADD chemogenetic activation with systemic clozapine N-oxide (CNO) administration also increased CST axon length and branching, but not the ventral horn and Chx10 targeting effects. Both patterned optical and chemogenetic activation reduced MCX MEP thresholds. CONCLUSION: Our findings show that targeting of CST axon sprouting is dependent on patterned activation, but that CST spinal axon outgrowth and branching are not. Our optogenetic findings, by distinguishing optically activated and non-activated CST axons, suggests that the switch for activity-dependent axonal outgrowth is neuron-intrinsic.


Assuntos
Córtex Motor , Tratos Piramidais , Ratos , Animais , Tratos Piramidais/fisiologia , Córtex Motor/fisiologia , Ratos Sprague-Dawley , Axônios/fisiologia , Neurônios Motores , Crescimento Neuronal
4.
Brain Stimul ; 15(4): 1013-1022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35850438

RESUMO

BACKGROUND: The strength of connections between motor cortex (MCX) and muscle can be augmented with a variety of stimulation protocols. Augmenting MCX-to-muscle connection strength by neuromodulation may be a way to enhance the intact motor system's capacity for acquiring motor skills and promote function after injury to strengthen spared connections. But this enhancement must be maintained for functional improvements. OBJECTIVE: We determined if brief MCX muscle evoked potential (MEP) enhancement produced by single-block intermittent theta burst stimulation (iTBS) can be converted into a longer and structurally durable form of response enhancement with repeated daily and longer-term application. METHODS: Electrical iTBS was delivered through an implanted MCX epidural electrode and MEPs were recorded using implanted EMG electrodes in awake naïve rats. MCX activity was modulated further using chemogenetic (DREADDs) excitation and inhibition. Corticospinal tract (CST) axons were traced and immunochemistry used to measure CST synapses. RESULTS: A single MCX iTBS block (600 pulses) produced MEP LTP lasting ∼30-45 min. Concatenating five iTBS blocks within a 30-min session produced MEP LTP lasting 24-48 h, which could be strengthened or weakened by bidirectional MCX activity modulation. Effect duration was not changed. Finally, daily induction of this persistent MEP LTP with daily iTBS for 10-days produced MEP enhancement outlasting the stimulation period by at least 10 days, and accompanied by CST axonal outgrowth and structural changes at the CST-spinal interneuron synapse. CONCLUSION: Our findings inform the mechanisms of iTBS and provide a framework for designing neuromodulatory strategies to promote durable enhancement of cortical motor actions.


Assuntos
Córtex Motor , Animais , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiologia , Ratos , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos
5.
Front Neurosci ; 16: 856948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546896

RESUMO

Trans-spinal direct current stimulation (tsDCS) is a neuromodulatory approach to augment spinal cord activity to improve function after neurological disease and injury. Little is known about the mechanisms underlying tsDCS actions on the motor system. The purpose of this study is to determine the role for a persistent inward current (PIC)-like response in motoneurons in mediating tsDCS actions. We recorded single motor units from the extensor and flexor carpi radialis muscles in healthy sedated rats and measured unit activity changes produced by cervical enlargement cathodal and anodal tsDCS (c-tsDCS; a-tsDCS). Both c-tsDCS and a-tsDCS immediately increased spontaneous motor unit firing during stimulation. After c-tsDCS was stopped, spontaneous firing persisted for a substantial period (165 ± 5s), yet after a-tsDCS activity shortly returned to baseline (27 ± 7s). Administration of the L-type calcium channel blocker Nimodipine reduced spontaneous motor unit firing during c-tsDCS and blocked the persistent response. By contrast, Nimodipine did not change unit firing during a-tsDCS but the short persistent response was blocked. Computer simulation using a two-compartment neuronal model replicated the main experimental observations: larger and more persistent responses during and after c-tsDCS than a-tsDCS. Using reduced Ca2+ conductance to model Nimodipine action, a reduced response during c-tsDCS and elimination of the persistent response was observed. Our experimental findings, supported by computer simulation, show that c-tsDCS can target Ca2+ conductances to augment motoneuron activity. As tsDCS is well-tolerated in humans, this knowledge informs therapeutic treatment strategies to achieve rehabilitation goals after injury; in particular, to increase muscle force.

6.
Brain Stimul ; 15(3): 624-634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367670

RESUMO

BACKGROUND: A key outcome for spinal cord stimulation for neurorehabilitation after injury is to strengthen corticospinal system control of the arm and hand. Non-invasive, compared with invasive, spinal stimulation minimizes risk but depends on muscle-specific actions for restorative functions. OBJECTIVE: We developed a large-animal (cat) model, combining computational and experimental techniques, to characterize neuromodulation with transcutaneous spinal direct current stimulation (tsDCS) for facilitation of corticospinal motor drive to specific forelimb muscles. METHODS: Acute modulation of corticospinal function by tsDCS was measured using motor cortex-evoked muscle potentials (MEPs). The effects of current intensity, polarity (cathodal, anodal), and electrode position on specific forelimb muscle (biceps vs extensor carpi radialis, ECR) MEP modulation were examined. Locations of a key target, the motoneuron pools, were determined using neuronal tracing. A high-resolution anatomical (MRI and CT) model was developed for computational simulation of spinal current flow during tsDCS. RESULTS: Effects of tsDCS on corticospinal excitability were robust and immediate, therefore supporting MEPs as a sensitive marker of tsDCS targeting. Varying cathodal/anodal current intensity modulated MEP enhancement/suppression, with higher cathodal sensitivity. Muscle-specificity depended on cathode position; the rostral position preferentially augmented biceps responses and the caudal position, ECR responses. Precise anatomical current-flow modeling, supplemented with target motor pool distributions, can explain tsDCS focality on muscle groups. CONCLUSION: Anatomical current-flow modeling with physiological validation based on MEPs provides a framework to optimize muscle-specific tsDCS interventions. tsDCS targeting of representative motor pools enables muscle- and response-specific neuromodulation of corticospinal motor drive.


Assuntos
Reabilitação Neurológica , Estimulação da Medula Espinal , Animais , Potencial Evocado Motor/fisiologia , Humanos , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos , Extremidade Superior
7.
Handb Clin Neurol ; 184: 317-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034745

RESUMO

The sudden loss of movement after spinal cord injury (SCI) is life-changing and is a major impetus to study spinal cord motor system plasticity and devise novel repair strategies. This review focuses on the motor cortex and the corticospinal tract, which are key to producing voluntary movements. The motor cortex projects directly to the spinal cord, via the corticospinal tract, and indirectly, via relays in the brain stem. With loss of the corticospinal tract after SCI, the indirect paths may bypass the injury and play an important role in voluntary control. In health and after injury, the spinal cord is a key site for activity-dependent neuroplasticity of the corticospinal system. Three kinds of activity-dependent plasticity have been identified: (1) corticospinal tract axon sprouting after electrical stimulation of the motor cortex; (2) synaptic competition between corticospinal tract and proprioceptive afferent fiber terminations; and (3) long-term potentiation (LTP) at the corticospinal tract-spinal interneuron synapse. SCI damages descending motor pathway connections and, in turn, triggers a loss of down-stream activity-dependent processes. This activity loss produces spinal interneuron degeneration and several activity-dependent maladaptive changes that underly hyperreflexia, spasticity, and spasms. Animal studies show that phasic electrical and tonic direct current stimulation can be used to supplement activity after SCI to reduce the activity-dependent degenerative and maladaptive changes. Importantly, when applied chronically neuromodulation recruits spinal neuroplasticity to improve function after SCI by promoting activity-dependent corticospinal axon sprouting and synapse formation. This helps establish new functional connections and strengthens spared connections. Combining neuromodulation to promote repair and motor rehabilitation to train circuits can most effectively promote motor recovery.


Assuntos
Córtex Motor , Traumatismos da Medula Espinal , Animais , Humanos , Interneurônios , Plasticidade Neuronal , Tratos Piramidais , Recuperação de Função Fisiológica , Medula Espinal
8.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34934000

RESUMO

Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST-spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.


Assuntos
Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Animais , Potencial Evocado Motor/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Ratos
10.
Exp Neurol ; 341: 113715, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819448

RESUMO

Motor recovery after spinal cord injury is limited due to sparse descending pathway axons caudal to the injury. Rehabilitation is the primary treatment for paralysis in humans with SCI, but only produces modest functional recovery. Here, we determined if dual epidural motor cortex (M1) intermittent theta burst stimulation (iTBS) and cathodal transcutaneous spinal direct stimulation (tsDCS) enhances the efficacy of rehabilitation in improving motor function after cervical SCI. iTBS produces CST axon sprouting and tsDCS enhances M1-evoked spinal activity and muscle contractions after SCI. Rats were trained to perform the horizontal ladder task. Animals received a moderate midline C4 contusion, producing bilateral forelimb impairments. After 2 weeks, animals either received 10 days of iTBS+tsDCS or no stimulation; subsequently, all animals received 6 weeks of daily rehabilitation on the horizontal ladder task. Lesion size was not different in the two animal groups. Rehabilitation alone improved performance by a 22% reduction in skilled locomotion error rate, whereas stimulation+rehabilitation was markedly more effective (52%), and restored error rate to pre-injury levels. Stimulation+rehabilitation significantly increased CST axon length caudal to the injury and the amount of ventral horn label was positively correlated with functional improvement. The stimulation+rehabilitation group had significantly less proprioceptive afferent terminal labelling in the intermediate zone and fewer synapses on motoneurons . Afferent fiber terminal labeling was negatively correlated with motor recovery. Thus, the dual neuromodulation protocol promotes adaptive plasticity in corticospinal and proprioceptive afferents networks after contusion SCI, leading to enhanced rehabilitation efficacy and recovery of skilled locomotion.


Assuntos
Locomoção/fisiologia , Córtex Motor/fisiologia , Reabilitação Neurológica/métodos , Traumatismos da Medula Espinal/reabilitação , Estimulação da Medula Espinal/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Medula Cervical/lesões , Contusões/fisiopatologia , Contusões/reabilitação , Eletrodos Implantados , Feminino , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
11.
Childs Nerv Syst ; 36(9): 1945-1954, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577878

RESUMO

INTRODUCTION: Selective dorsal rhizotomy (SDR) consists of microsurgical partial deafferentation of sensory nerve roots (L1-S2). It is primarily used today in decreasing spasticity in young cerebral palsy (CP) patients. Intraoperative monitoring (IOM) is an essential part of the surgical decision-making process, aimed at improving functional results. The role played by SDR-IOM is examined, while realizing that connections between complex EMG responses to nerve-root stimulation and a patient's individual motor ability remain to be clarified. METHODS: We conducted this retrospective study, analyzing EMG responses in 146 patients evoked by dorsal-root and rootlet stimulation, applying an objective response-classification system, and investigating the prevalence and distribution of the assessed grades. Part1 describes the clinical setting and SDR procedure, reintroduced in Germany by the senior author in 2007. RESULTS: Stimulation-evoked EMG response patterns revealed significant differences along the segmental levels. More specifically, a comparison of grade 3+4 prevalence showed that higher-graded rootlets were more noticeable at lower nerve root levels (L5, S1), resulting in a typical rostro-caudal anatomical distribution. CONCLUSIONS: In view of its prophylactic potential, SDR should be carried out at an early stage in all CP patients suffering from severe spasticity. It is particularly effective when used as an integral part of a coordinated, comprehensive spasticity program in which a team of experts pool their information. The IOM findings pertaining to the anatomical grouping of grades could be of potential importance in adjusting the SDR-IOM intervention to suit the specific individual constellation, pending further validation. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT03079362.


Assuntos
Paralisia Cerebral , Rizotomia , Paralisia Cerebral/cirurgia , Criança , Alemanha , Humanos , Espasticidade Muscular/cirurgia , Estudos Retrospectivos , Raízes Nervosas Espinhais/cirurgia , Resultado do Tratamento
12.
Childs Nerv Syst ; 36(9): 1955-1965, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588175

RESUMO

INTRODUCTION: Spinal reflexes reorganize in cerebral palsy (CP), producing hyperreflexia and spasticity. CP is more common among male infants, and gender might also influence brain and spinal-cord reorganization. This retrospective study investigated the frequency of higher-graded EMG responses elicited by electrical nerve-root stimulation during selective dorsal rhizotomy (SDR), prior to partial nerve- root deafferentation, considering not only segmental level and body side, but also gender. METHODS: Intraoperative neuromonitoring (IOM) was used in SDR to pinpoint the rootlets most responsible for exacerbated stimulation-evoked EMG patterns recorded from lower-limb muscle groups. Responses were graded according to an objective response-classification system, ranging from no abnormalities (grade 0) to highly abnormal (grade 4+), based on ipsilateral spread and contralateral involvement. Non-parametric analysis of data with repeated measures was primarily used in investigating the frequency distribution of these various EMG response grades. Over 7000 rootlets were stimulated, and the results for 65 girls and 81 boys were evaluated, taking changes in the composition of patient groups into account when considering GMFCS levels. RESULTS: The distribution of graded EMG responses varied according to gender, laterality, and level. Higher-graded EMG responses were markedly more frequent in the boys and at lower segmental levels (L5, S1). Left-biased asymmetry in higher-graded rootlets was also more noticeable in the boys and in patients with GMFCS level I. A close link was observed between higher-grade assessments and left-biased asymmetry. CONCLUSIONS: Detailed insight into the patient's initial spinal-neurofunctional state prior to deafferentation suggests that differences in asymmetrical spinal reorganization might be attributable to a hemispheric imbalance.


Assuntos
Paralisia Cerebral , Rizotomia , Paralisia Cerebral/cirurgia , Criança , Eletromiografia , Feminino , Humanos , Lactente , Masculino , Espasticidade Muscular/cirurgia , Estudos Retrospectivos , Caracteres Sexuais , Raízes Nervosas Espinhais/cirurgia
13.
J Neurosci ; 40(28): 5402-5412, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471877

RESUMO

Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.


Assuntos
Axônios/metabolismo , Caspases/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Orientação de Axônios/fisiologia , Camundongos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/fisiologia , Tratos Piramidais/metabolismo
14.
J Neurosci Methods ; 328: 108446, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589892

RESUMO

BACKGROUND: Quasi-uniform assumption is a general theory that postulates local electric field predicts neuronal activation. Computational current flow model of spinal cord stimulation (SCS) of humans and animal models inform how the quasi-uniform assumption can support scaling neuromodulation dose between humans and translational animal. NEW METHOD: Here we developed finite element models of cat and rat SCS, and brain slice, alongside SCS models. Boundary conditions related to species specific electrode dimensions applied, and electric fields per unit current (mA) predicted. RESULTS: Clinically and across animal, electric fields change abruptly over small distance compared to the neuronal morphology, such that each neuron is exposed to multiple electric fields. Per unit current, electric fields generally decrease with body mass, but not necessarily and proportionally across tissues. Peak electric field in dorsal column rat and cat were ∼17x and ∼1x of clinical values, for scaled electrodes and equal current. Within the spinal cord, the electric field for rat, cat, and human decreased to 50% of peak value caudo-rostrally (C5-C6) at 0.48 mm, 3.2 mm, and 8 mm, and mediolaterally at 0.14 mm, 2.3 mm, and 3.1 mm. Because these space constants are different, electric field across species cannot be matched without selecting a region of interest (ROI). COMPARISON WITH EXISTING METHOD: This is the first computational model to support scaling neuromodulation dose between humans and translational animal. CONCLUSIONS: Inter-species reproduction of the electric field profile across the entire surface of neuron populations is intractable. Approximating quasi-uniform electric field in a ROI is a rational step to translational scaling.


Assuntos
Simulação por Computador , Modelos Neurológicos , Estimulação da Medula Espinal , Pesquisa Translacional Biomédica , Animais , Gatos , Humanos , Ratos
15.
Exp Neurol ; 321: 113015, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31326353

RESUMO

Spared corticospinal tract (CST) and proprioceptive afferent (PA) axons sprout after injury and contribute to rewiring spinal circuits, affecting motor recovery. Loss of CST connections post-injury results in corticospinal signal loss and associated reduction in spinal activity. We investigated the role of activity loss and injury on CST and PA sprouting. To understand activity-dependence after injury, we compared CST and PA sprouting after motor cortex (MCX) inactivation, produced by chronic MCX muscimol microinfusion, with sprouting after a CST lesion produced by pyramidal tract section (PTx). Activity suppression, which does not produce a lesion, is sufficient to trigger CST axon outgrowth from the active side to cross the midline and to enter the inactivated side of the spinal cord, to the same extent as PTx. Activity loss was insufficient to drive significant CST gray matter axon elongation, an effect of PTx. Activity suppression triggered presynaptic site formation, but less than PTx. Activity loss triggered PA sprouting, as PTx. To understand injury-dependent sprouting further, we blocked microglial activation and associated inflammation after PTX by chronic minocycline administration after PTx. Minocycline inhibited myelin debris phagocytosis contralateral to PTx and abolished CST axon elongation, formation of presynaptic sites, and PA sprouting, but not CST axon outgrowth from the active side to cross the midline. Our findings suggest sprouting after injury has a strong activity dependence and that microglial activation after injury supports axonal elongation and presynaptic site formation. Combining spinal activity support and inflammation control is potentially more effective in promoting functional restoration than either alone.


Assuntos
Microglia/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Tratos Piramidais/lesões , Recuperação de Função Fisiológica/fisiologia , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Masculino , Microglia/patologia , Neurônios/patologia , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
16.
Exp Neurol ; 320: 112962, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31125548

RESUMO

Cervical spinal cord injury (SCI) impairs arm and hand function largely by interrupting descending tracts. Most SCI spare some axons at the lesion, including the corticospinal tract (CST), which is critical for voluntary movement. We targeted descending motor connections with paired electrical stimulation of motor cortex and cervical spinal cord in the rat. We sought to replicate the previously published effects of intermittent theta burst stimulation of forelimb motor cortex combined with trans-spinal direct current stimulation placed on the skin over the neck to target the cervical enlargement. We hypothesized that paired stimulation would improve performance in skilled walking and food manipulation (IBB) tasks. Rats received a moderate C4 spinal cord contusion injury (200 kDynes), which ablates the main CST. They were randomized to receive paired stimulation for 10 consecutive days starting 11 days after injury, or no stimulation. Behavior was assessed weekly from weeks 4-7 after injury, and then CST axons were traced. Rats with paired cortical and spinal stimulation achieved significantly better forelimb motor function recovery, as measured by fewer stepping errors on the horizontal ladder task (34 ±â€¯9% in stimulation group vs. 51 ±â€¯18% in control, p = .013) and higher scores on the food manipulation task (IBB, 0-9 score; 7.2 ±â€¯0.8 in stimulated rats vs. 5.2 ±â€¯2.6 in controls, p = .025). The effect size for both tasks was large (Cohen's d = 1.0 and 0.92, respectively). The CST axon length in the cervical spinal cord did not differ significantly between the groups, but there was denser and broader ipsilateral axons distribution distal to the spinal cord injury. The large behavioral effect and replication in an independent laboratory validate this approach, which will be trialed in cats before being tested in people using non-invasive methods.


Assuntos
Medula Cervical/fisiopatologia , Estimulação Elétrica/métodos , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Método Duplo-Cego , Membro Anterior , Ratos , Recuperação de Função Fisiológica/fisiologia
17.
J Neurosci ; 38(39): 8329-8344, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049887

RESUMO

Injury to the supraspinal motor systems, especially the corticospinal tract, leads to movement impairments. In addition to direct disruption of descending motor pathways, spinal motor circuits that are distant to and not directly damaged by the lesion undergo remodeling that contributes significantly to the impairments. Knowing which spinal circuits are remodeled and the underlying mechanisms are critical for understanding the functional changes in the motor pathway and for developing repair strategies. Here, we target spinal premotor cholinergic interneurons (IN) that directly modulate motoneuron excitability via their cholinergic C-bouton terminals. Using a model of unilateral medullary corticospinal tract lesion in male rats, we found transneuronal downregulation of the premotor cholinergic pathway. Phagocytic microglial cells were upregulated in parallel with cholinergic pathway downregulation and both were blocked by minocycline, a microglia activation inhibitor. Additionally, we found a transient increase in interneuronal complement protein C1q expression that preceded cell loss. 3D reconstructions showed ongoing phagocytosis of C1q-expressing cholinergic INs by microglia 3 d after injury, which was complete by 10 d after injury. Unilateral motor cortex inactivation using the GABAA receptor agonist muscimol replicated the changes detected at 3 d after lesion, indicating activity dependence. The neuronal loss after the lesion was rescued by increasing spinal activity using cathodal trans-spinal direct current stimulation. Our finding of activity-dependent modulation of cholinergic premotor INs after CST injury provides the mechanistic insight that maintaining activity, possibly during a critical period, helps to protect distant motor circuits from further damage and, as a result, may improve motor functional recovery and rehabilitation.SIGNIFICANCE STATEMENT Supraspinal injury to the motor system disrupts descending motor pathways, leading to movement impairments. Whether and how intrinsic spinal circuits are remodeled after a brain injury is unclear. Using a rat model of unilateral corticospinal tract lesion in the medulla, we show activity-dependent, transneuronal downregulation of the spinal premotor cholinergic system, which is mediated by microglial phagocytosis, possibly involving a rapid and transient increase in neuronal C1q before neuronal loss. Spinal cord neuromodulation after injury to augment spinal activity rescued the premotor cholinergic system. Our findings provide the mechanistic insight that maintaining activity, possibly during an early critical period, could protect distant motor circuits from further damage mediated by microglia and interneuronal complement protein and improve motor functional outcomes.


Assuntos
Neurônios Colinérgicos/fisiologia , Microglia/fisiologia , Neurônios Motores/fisiologia , Tratos Piramidais/fisiologia , Animais , Medula Cervical/fisiologia , Neurônios Colinérgicos/metabolismo , Complemento C1q/metabolismo , Interneurônios/fisiologia , Masculino , Córtex Motor/fisiologia , Plasticidade Neuronal , Fagocitose , Tratos Piramidais/lesões , Ratos Sprague-Dawley , Estimulação da Medula Espinal
18.
Exp Neurol ; 307: 133-144, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729248

RESUMO

The corticospinal tract (CST) can become damaged after spinal cord injury or stroke, resulting in weakness or paralysis. Repair of the damaged CST is limited because mature CST axons fail to regenerate, which is partly because the intrinsic axon growth capacity is downregulated in maturity. Whereas CST axons sprout after injury, this is insufficient to recover lost functions. Chronic motor cortex (MCX) electrical stimulation is a neuromodulatory strategy to promote CST axon sprouting, leading to functional recovery after CST lesion. Here we examine the molecular mechanisms of stimulation-dependent CST axonal sprouting and synapse formation. MCX stimulation rapidly upregulates mTOR and Jak/Stat signaling in the corticospinal system. Chronic stimulation, which leads to CST sprouting and increased CST presynaptic sites, further enhances mTOR and Jak/Stat activity. Importantly, chronic stimulation shifts the equilibrium of the mTOR repressor PTEN to the inactive phosphorylated form suggesting a molecular transition to an axon growth state. We blocked each signaling pathway selectively to determine potential differential contributions to axonal outgrowth and synapse formation. mTOR blockade prevented stimulation-dependent axon sprouting. Surprisingly, Jak/Stat blockade did not abrogate sprouting, but instead prevented the increase in CST presynaptic sites produced by chronic MCX stimulation. Chronic stimulation increased the number of spinal neurons expressing the neural activity marker cFos. Jak/Stat blockade prevented the increase in cFos-expressing neurons after chronic stimulation, confirming an important role for Jak/Stat signaling in activity-dependent CST synapse formation. MCX stimulation is a neuromodulatory repair strategy that reactivates distinct developmentally-regulated signaling pathways for axonal outgrowth and synapse formation.


Assuntos
Córtex Motor/metabolismo , Regeneração Nervosa/fisiologia , Tratos Piramidais/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Estimulação Elétrica/métodos , Feminino , Córtex Motor/citologia , Tratos Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
19.
Dev Med Child Neurol ; 59(12): 1224-1229, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28972274

RESUMO

In maturity, motor skills depend on the corticospinal tract (CST) and brainstem pathways that together synapse on interneurons and motoneurons in the spinal cord. Descending signals to spinal neurons that mediate voluntary control can be distinguished from peripheral sensory signals, primarily for feedback control. These motor system circuits depend initially on developmental genetic mechanisms to establish their connections and neural activity- and use-dependent synaptic refinement during the early postnatal period to enable motor skills to develop. In this review we consider four key activity-dependent developmental mechanisms that provide insights into how the motor systems establish the proper connections for skilled movement control and how the same mechanisms also inform the mechanisms of motor impairments and developmental plasticity after corticospinal system injury: (1) synaptic competition between the CSTs from each hemisphere; (2) interactions between the CST and spinal cord neurons; (3) synaptic competition between the CST and proprioceptive sensory fibres; and (4) interactions between the developing corticospinal motor system and the rubrospinal tract. Our findings suggest that the corticospinal motor system effectively 'oversees' development of its subcortical targets through synaptic competition and trophic-like interactions and this has important implications for motor impairments after perinatal cortical stroke. WHAT THIS PAPER ADDS: Neural activity-dependent processes inform the brain and spinal cord response to injury. The corticospinal motor system may 'oversee' development of its downstream subcortical targets through activity, trophic-like interactions, and synaptic competition.


Assuntos
Encéfalo/crescimento & desenvolvimento , Córtex Motor/lesões , Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiologia , Animais , Humanos , Tratos Piramidais/crescimento & desenvolvimento
20.
Nature ; 549(7672): 365-369, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28933439

RESUMO

Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...