Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128656

RESUMO

BACKGROUND: Diabetes carries an increased risk of cardiovascular disease and thromboembolic events. Upon endothelial dysfunction, platelets bind to endothelial cells to precipitate thrombus formation; however, it is unclear which surface proteins regulate platelet-endothelium interaction. We and others have shown that peri/epicellular protein disulfide isomerase A1 (pecPDI) influences the adhesion and migration of vascular cells. OBJECTIVES: We investigated whether pecPDI regulates adhesion-related molecules on the surface of endothelial cells and platelets that influence the binding of these cells in hyperglycemia. METHODS: Immunofluorescence was used to assess platelet-endothelium interaction in vitro, cytoskeleton reorganization, and focal adhesions. Hydrogen peroxide production was assessed via Amplex Red assays (ThermoFisher Scientific). Cell biophysics was assessed using atomic force microscopy. Secreted proteins of interest were identified through proteomics (secretomics), and targets were knocked down using small interfering RNA. Protein disulfide isomerase A1 (PDI) contribution was assessed using whole-cell PDI or pecPDI inhibitors or small interfering RNA. RESULTS: Platelets of healthy donors adhered more onto hyperglycemic human umbilical vein endothelial cells (HUVECs). Endothelial, but not platelet, pecPDI regulated this effect. Hyperglycemic HUVECs showed marked cytoskeleton reorganization, increased H2O2 production, and elongated focal adhesions. Indeed, hyperglycemic HUVECs were stiffer compared with normoglycemic cells. PDI and pecPDI inhibition reversed the abovementioned processes in hyperglycemic cells. A secretomics analysis revealed 8 proteins secreted in a PDI-dependent manner by hyperglycemic cells. Among these, we showed that genetic deletion of LAMC1 and SLC3A2 decreased platelet-endothelium interaction and did not potentiate the effects of PDI inhibitors. CONCLUSION: Endothelial pecPDI regulates platelet-endothelium interaction in hyperglycemia through adhesion-related proteins and alterations in endothelial membrane biophysics.

2.
Chem Res Toxicol ; 37(8): 1246-1268, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38990804

RESUMO

Nicotinamide riboside (NR), a NAD+ precursor, has received attention due to several health benefits it has induced in experimental models. Studies in cultured cells, animals, and humans consistently show increased NAD+ availability after NR supplementation, which is considered the only mode of NR action that leads to health benefits. In the present study, we show that a persistently low NR concentration (1 µM) in the growth medium of BEAS-2B human cells, grown in a monolayer, induces energy stress, which precedes a cellular NAD+ increase after 192 h. NR concentrations greater than 1 µM under the specified conditions were cytotoxic in the 2D cell culture model, while all concentrations tested in the 3D cell culture model (BEAS-2B cell spheroids exposed to 1, 5, 10, and 50 µM NR) induced apoptosis. Shotgun proteomics revealed that NR modulated the abundance of proteins, agreeing with the observed effects on cellular energy metabolism and cell growth or survival. Energy stress may activate pathways that lead to health benefits such as cancer prevention. Accordingly, the premalignant 1198 cell line was more sensitive to NR cytotoxicity than the phenotypically normal parent BEAS-2B cell line. The role of a mild energy stress induced by low concentrations of NR in its beneficial effects deserves further investigation. On the other hand, strategies to increase the bioavailability of NR require attention to toxic effects that may arise.


Assuntos
Metabolismo Energético , Niacinamida , Compostos de Piridínio , Humanos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Metabolismo Energético/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Apoptose/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Reprogramação Metabólica
3.
Biochim Biophys Acta Proteins Proteom ; 1872(5): 141030, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38944097

RESUMO

In proteomic studies, the reliability and reproducibility of results hinge on well-executed protein extraction and digestion protocols. Here, we systematically compared three established digestion methods for macrophages, namely filter-assisted sample preparation (FASP), in-solution, and in-gel digestion protocols. We also compared lyophilization and manual lysis for liver tissue protein extraction, each of them tested using either sodium deoxycholate (SDC)- or RIPA-based lysis buffer. For the macrophage cell line, FASP using passivated filter units outperformed the other tested methods regarding the number of identified peptides and proteins. However, a careful standardization has shown that all three methods can yield robust results across a wide range of starting material (even starting with 1 µg of proteins). Importantly, inter and intra-day coefficients of variance (CVs) were determined for all sample preparation protocols. Thus, the median inter-day CVs for in-solution, in-gel and FASP protocols were respectively 10, 8 and 9%, very similar to the median CVs obtained for the intra-day analysis (9, 8 and 8%, respectively). Moreover, FASP digestion presented 80% of proteins with a CV lower than 25%, followed closely by in-gel digestion (78%) and in-solution sample preparation (72%) protocols. For tissue proteomics, both manual lysis and lyophilization presented similar proteome coverage and reproducibility, but the efficiency of protein extraction depended on the lysis buffer used, with RIPA buffer showing better results. In conclusion, although each sample preparation method has its own particularity, they are all suited for successful proteomic experiments if a careful standardization of the sample preparation workflow is carried out.


Assuntos
Proteômica , Proteômica/métodos , Animais , Camundongos , Fígado/metabolismo , Macrófagos/metabolismo , Reprodutibilidade dos Testes , Ácido Desoxicólico , Proteínas/análise , Proteínas/metabolismo , Proteoma/metabolismo , Liofilização/métodos
4.
Free Radic Biol Med ; 187: 17-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580773

RESUMO

Methionine is one of the main targets for biological oxidants. Its reaction with the majority of oxidants generates only methionine sulfoxide. However, when N-terminal methionine reacts with hypohalous acids (HOCl and HOBr) or singlet molecular oxygen (1O2), it can also generate a cyclic product called dehydromethionine (DHM). Previously, DHM was suggested as a biomarker of oxidative stress induced by hypohalous acids. However, DHM can also be generated by 1O2 -oxidation of methionine, and the contribution of this pathway of DHM formation in a context of a site-specific redox imbalance in an organism is unknown. In this work, a through comparison of the reactions of hypohalous acids and 1O2 with methionine, either free or inserted in peptides and proteins was undertaken. In addition, we performed methionine photooxidation in heavy water (H218O) to determine the influence of the pH in the mechanism of DHM formation. We showed that for free methionine, or methionine-containing peptides, the yields of DHM formation in the reactions with 1O2 were close to those achieved by HOBr oxidation, but much higher than the yields obtained with HOCl as the oxidant. This was true for all pH tested (5, 7.4, and 9). Interestingly, for the protein ubiquitin, DHM yields after reaction with 1O2 were higher than those obtained with both hypohalous acids. Our results indicate that 1O2 may also be an important source of DHM in biological systems.


Assuntos
Metionina , Oxigênio Singlete , Metionina/química , Oxidantes/química , Oxirredução , Oxigênio , Peptídeos/química , Proteínas , Oxigênio Singlete/química , Tiazóis
5.
Photochem Photobiol ; 98(3): 678-686, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363890

RESUMO

The reaction of singlet oxygen (1 O2 ) with the amino acids tryptophan and tyrosine, either free or inserted in peptides or proteins, gives rise to hydroperoxides. To understand the impact of these hydroperoxides in complex biological systems, methods allowing their characterization and accurate quantification must be available. In this work, hydroperoxides derived from tryptophan and tyrosine and from peptides containing these amino acids were synthesized by photooxidation, and characterized by high-resolution mass spectrometry. In addition, experiments were carried out to compare two colorimetric methods commonly used for quantification of peroxides, namely the iodometric and the ferric-xylenol orange assays. For the tryptophan hydroperoxide, the quantifications obtained by colorimetric methods were then compared to that obtained by NMR. The results showed that for the ferric-xylenol orange method, the stoichiometry between peroxide and Fe3+ ions varies considerably. On the other hand, for the iodometric assay, the stoichiometry peroxide:I3 - ions is always 1:1. However, the kinetics of the reactions of peroxides with I- vary, and the assay must be performed in anaerobic conditions. Thus, the iodometric method is more appropriate for precise quantification of a given peroxide. The characterization and accurate quantification of biological peroxides is key to understand the mechanisms involved in redox processes.


Assuntos
Peróxido de Hidrogênio , Triptofano , Aminas/química , Aminoácidos/química , Peróxido de Hidrogênio/química , Oxirredução , Peptídeos/química , Peróxidos , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...