Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883236

RESUMO

Background ­: Limited universally adopted data standards in veterinary science hinders data interoperability and therefore integration and comparison; this ultimately impedes application of existing information-based tools to support advancement in veterinary diagnostics, treatments, and precision medicine. Hypothesis/Objectives ­: Creation of a Vertebrate Breed Ontology (VBO) as a single, coherent logic-based standard for documenting breed names in animal health, production and research-related records will improve data use capabilities in veterinary and comparative medicine. Animals ­: No live animals were used in this study. Methods ­: A list of breed names and related information was compiled from relevant sources, organizations, communities, and experts using manual and computational approaches to create VBO. Each breed is represented by a VBO term that includes all provenance and the breed's related information as metadata. VBO terms are classified using description logic to allow computational applications and Artificial Intelligence-readiness. Results ­: VBO is an open, community-driven ontology representing over 19,000 livestock and companion animal breeds covering 41 species. Breeds are classified based on community and expert conventions (e.g., horse breed, cattle breed). This classification is supported by relations to the breeds' genus and species indicated by NCBI Taxonomy terms. Relationships between VBO terms, e.g. relating breeds to their foundation stock, provide additional context to support advanced data analytics. VBO term metadata includes common names and synonyms, breed identifiers/codes, and attributed cross-references to other databases. Conclusion and clinical importance ­: Veterinary data interoperability and computability can be enhanced by the adoption of VBO as a source of standard breed names in databases and veterinary electronic health records.

2.
Sci Data ; 11(1): 363, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605048

RESUMO

Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.


Assuntos
Disciplinas das Ciências Biológicas , Bases de Conhecimento , Reconhecimento Automatizado de Padrão , Algoritmos , Pesquisa Translacional Biomédica
3.
Med ; 4(12): 913-927.e3, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37963467

RESUMO

BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.


Assuntos
Ontologias Biológicas , Humanos , Doenças Raras , Software , Simulação por Computador
4.
medRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503136

RESUMO

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).

5.
NPJ Digit Med ; 6(1): 89, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208468

RESUMO

Common data models solve many challenges of standardizing electronic health record (EHR) data but are unable to semantically integrate all of the resources needed for deep phenotyping. Open Biological and Biomedical Ontology (OBO) Foundry ontologies provide computable representations of biological knowledge and enable the integration of heterogeneous data. However, mapping EHR data to OBO ontologies requires significant manual curation and domain expertise. We introduce OMOP2OBO, an algorithm for mapping Observational Medical Outcomes Partnership (OMOP) vocabularies to OBO ontologies. Using OMOP2OBO, we produced mappings for 92,367 conditions, 8611 drug ingredients, and 10,673 measurement results, which covered 68-99% of concepts used in clinical practice when examined across 24 hospitals. When used to phenotype rare disease patients, the mappings helped systematically identify undiagnosed patients who might benefit from genetic testing. By aligning OMOP vocabularies to OBO ontologies our algorithm presents new opportunities to advance EHR-based deep phenotyping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...