Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
medRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38883763

RESUMO

The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.

2.
medRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766239

RESUMO

Background: A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. Methods: We analyzed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Rdatabase. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. Findings: Among the ten antigens analyzed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. Interpretations: These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritizing conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. Funding: Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).

3.
PLOS Glob Public Health ; 4(4): e0003072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683820

RESUMO

Community-based serological studies are increasingly relied upon to measure disease burden, identify population immunity gaps, and guide control and elimination strategies; however, there is little understanding of the potential for and impact of sampling biases on outcomes of interest. As part of efforts to quantify measles immunity gaps in Zambia, a community-based serological survey using stratified multi-stage cluster sampling approach was conducted in Ndola and Choma districts in May-June 2022, enrolling 1245 individuals. We carried out a follow-up study among individuals missed from the sampling frame of the serosurvey in July-August 2022, enrolling 672 individuals. We assessed the potential for and impact of biases in the community-based serosurvey by i) estimating differences in characteristics of households and individuals included and excluded (77% vs 23% of households) from the sampling frame of the serosurvey and ii) evaluating the magnitude these differences make on healthcare-seeking behavior, vaccination coverage, and measles seroprevalence. We found that missed households were 20% smaller and 25% less likely to have children. Missed individuals resided in less wealthy households, had different distributions of sex and occupation, and were more likely to seek care at health facilities. Despite these differences, simulating a survey in which missed households were included in the sampling frame resulted in less than a 5% estimated bias in these outcomes. Although community-based studies are upheld as the gold standard study design in assessing immunity gaps and underlying community health characteristics, these findings underscore the fact that sampling biases can impact the results of even well-conducted community-based surveys. Results from these studies should be interpreted in the context of the study methodology and challenges faced during implementation, which include shortcomings in establishing accurate and up-to-date sampling frames. Failure to account for these shortcomings may result in biased estimates and detrimental effects on decision-making.

4.
Malar J ; 22(1): 208, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420265

RESUMO

BACKGROUND: Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS: In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS: The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION: Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Zâmbia/epidemiologia , Análise Espacial , Genômica
5.
Malar J ; 21(1): 325, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369086

RESUMO

BACKGROUND: Seasonal patterns of malaria cases in many parts of Africa are generally associated with rainfall, yet in the dry seasons, malaria transmission declines but does not always cease. It is important to understand what conditions support these periodic cases. Aerial moisture is thought to be important for mosquito survival and ability to forage, but its role during the dry seasons has not been well studied. During the dry season aerial moisture is minimal, but intermittent periods may arise from the transpiration of peri-domestic trees or from some other sources in the environment. These periods may provide conditions to sustain pockets of mosquitoes that become active and forage, thereby transmitting malaria. In this work, humidity along with other ecological variables that may impact malaria transmission have been examined. METHODS: Negative binomial regression models were used to explore the association between peri-domestic tree humidity and local malaria incidence. This was done using sensitive temperature and humidity loggers in the rural Southern Province of Zambia over three consecutive years. Additional variables including rainfall, temperature and elevation were also explored. RESULTS: A negative binomial model with no lag was found to best fit the malaria cases for the full year in the evaluated sites of the Southern Province of Zambia. Local tree and granary night-time humidity and temperature were found to be associated with local health centre-reported incidence of malaria, while rainfall and elevation did not significantly contribute to this model. A no lag and one week lag model for the dry season alone also showed a significant effect of humidity, but not temperature, elevation, or rainfall. CONCLUSION: The study has shown that throughout the dry season, periodic conditions of sustained humidity occur that may permit foraging by resting mosquitoes, and these periods are associated with increased incidence of malaria cases. These results shed a light on conditions that impact the survival of the common malaria vector species, Anopheles arabiensis, in arid seasons and suggests how they emerge to forage when conditions permit.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/epidemiologia , Umidade , Estações do Ano , Mosquitos Vetores , Zâmbia/epidemiologia
6.
Am J Trop Med Hyg ; 107(4_Suppl): 55-67, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228903

RESUMO

For a decade, the Southern and Central Africa International Center of Excellence for Malaria Research has operated with local partners across study sites in Zambia and Zimbabwe that range from hypo- to holoendemic and vary ecologically and entomologically. The burden of malaria and the impact of control measures were assessed in longitudinal cohorts, cross-sectional surveys, passive and reactive case detection, and other observational designs that incorporated multidisciplinary scientific approaches: classical epidemiology, geospatial science, serosurveillance, parasite and mosquito genetics, and vector bionomics. Findings to date have helped elaborate the patterns and possible causes of sustained low-to-moderate transmission in southern Zambia and eastern Zimbabwe and recalcitrant high transmission and fatality in northern Zambia. Cryptic and novel mosquito vectors, asymptomatic parasite reservoirs in older children, residual parasitemia and gametocytemia after treatment, indoor residual spraying timed dyssynchronously to vector abundance, and stockouts of essential malaria commodities, all in the context of intractable rural poverty, appear to explain the persistent malaria burden despite current interventions. Ongoing studies of high-resolution transmission chains, parasite population structures, long-term malaria periodicity, and molecular entomology are further helping to lay new avenues for malaria control in southern and central Africa and similar settings.


Assuntos
Inseticidas , Malária , Parasitos , África Central , Animais , Criança , Estudos Transversais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Zâmbia/epidemiologia , Zimbábue/epidemiologia
7.
Am J Trop Med Hyg ; 107(4_Suppl): 68-74, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228913

RESUMO

The International Centers of Excellence for Malaria Research (ICEMR) were established by the National Institute of Allergy and Infectious Diseases more than a decade ago to provide multidisciplinary research support to malaria control programs worldwide, operating in endemic areas and contributing technology, expertise, and ultimately policy guidance for malaria control and elimination. The Southern and Central Africa ICEMR has conducted research across three main sites in Zambia and Zimbabwe that differ in ecology, entomology, transmission intensity, and control strategies. Scientific findings led to new policies and action by the national malaria control programs and their partners in the selection of methods, materials, timing, and locations of case management and vector control. Malaria risk maps and predictive models of case detection furnished by the ICEMR informed malaria elimination programming in southern Zambia, and time series analyses of entomological and parasitological data motivated several major changes to indoor residual spray campaigns in northern Zambia. Along the Zimbabwe-Mozambique border, temporal and geospatial data are currently informing investigations into a recent resurgence of malaria. Other ICEMR findings pertaining to parasite and mosquito genetics, human behavior, and clinical epidemiology have similarly yielded immediate and long-term policy implications at each of the sites, often with generalizable conclusions. The ICEMR programs thereby provide rigorous scientific investigations and analyses to national control and elimination programs, without which the impediments to malaria control and their potential solutions would remain understudied.


Assuntos
Malária , Mosquitos Vetores , África Central , Animais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Políticas , Zâmbia/epidemiologia , Zimbábue/epidemiologia
8.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36146671

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have significantly impacted the global epidemiology of the pandemic. From December 2020 to April 2022, we conducted genomic surveillance of SARS-CoV-2 in the Southern Province of Zambia, a region that shares international borders with Botswana, Namibia, and Zimbabwe and is a major tourist destination. Genetic analysis of 40 SARS-CoV-2 whole genomes revealed the circulation of Alpha (B.1.1.7), Beta (B.1.351), Delta (AY.116), and multiple Omicron subvariants with the BA.1 subvariant being predominant. Whereas Beta, Delta, and Omicron variants were associated with the second, third, and fourth pandemic waves, respectively, the Alpha variant was not associated with any wave in the country. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Zambia from different European and African countries. Across the 40 genomes analysed, a total of 292 mutations were observed, including 182 missense mutations, 66 synonymous mutations, 23 deletions, 9 insertions, 1 stop codon, and 11 mutations in the non-coding region. This study stresses the need for the continued monitoring of SARS-CoV-2 circulation in Zambia, particularly in strategically positioned regions such as the Southern Province which could be at increased risk of introduction of novel VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Códon de Terminação , Genômica , Humanos , Mutação , Filogenia , SARS-CoV-2/genética , Zâmbia/epidemiologia
9.
Am J Trop Med Hyg ; 106(6): 1791-1799, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35895429

RESUMO

Malaria incidence has declined in southern Zambia over recent decades, leading to efforts to achieve and sustain malaria elimination. Understanding the remaining disease burden is key to providing optimal health care. A longitudinal study conducted in a rural area of Choma District, Southern Province, Zambia, assessed the prevalence of and factors associated with symptoms of non-malarial illnesses and treatment-seeking behavior. We analyzed data collected monthly between October 2018 through September 2020 from 1,174 individuals from 189 households. No incident malaria cases were detected by rapid diagnostic tests among febrile participants. Mixed-effects logistic regression identified factors associated with cough, fever, diarrhea, and treatment-seeking. Incidence rates of cough (192 of 1,000 person-months), fever (87 of 1,000 person-months), and fever with cough (37 of 1,000 person-months) were highest among adults older than 65 years. Diarrhea incidence (37 of 1,000 person-months) was highest among children younger than 5 years. For every additional symptomatic household member, one's odds of experiencing symptoms increased: cough by 47% (95% CI, 40-55), fever by 31% (95% CI, 23-40), diarrhea by 31% (95% CI, 17-46), and fever with cough by 112% (95% CI, 90-137), consistent with household clustering of illnesses. However, between 35% and 75% of participants did not seek treatment for their symptoms. Treatment-seeking was most common for children 5 to 9 years old experiencing diarrhea (adjusted odds ratio, 3.61; 95% CI, 1.42-9.18). As malaria prevalence reduces, respiratory and diarrheal infections persist, particularly among young children but, notably, also among adults older than 65 years. Increasing awareness of the disease burden and treatment-seeking behavior are important for guiding resource re-allocation as malaria prevalence declines in this region.


Assuntos
Tosse , Malária , Adulto , Criança , Pré-Escolar , Tosse/epidemiologia , Diarreia/epidemiologia , Febre/epidemiologia , Humanos , Estudos Longitudinais , Malária/epidemiologia , Malária/terapia , Zâmbia/epidemiologia
10.
BMJ Open ; 12(12): e066763, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36600354

RESUMO

OBJECTIVES: To determine the prevalence of COVID-19 postmortem setting in Lusaka, Zambia. DESIGN: A systematic, postmortem prevalence study. SETTING: A busy, inner-city morgue in Lusaka. PARTICIPANTS: We sampled a random subset of all decedents who transited the University Teaching Hospital morgue. We sampled the posterior nasopharynx of decedents using quantitative PCR. Prevalence was weighted to account for age-specific enrolment strategies. INTERVENTIONS: Not applicable-this was an observational study. PRIMARY OUTCOMES: Prevalence of COVID-19 detections by PCR. Results were stratified by setting (facility vs community deaths), age, demographics and geography and time. SECONDARY OUTCOMES: Shifts in viral variants; causal inferences based on cycle threshold values and other features; antemortem testing rates. RESULTS: From 1118 decedents enrolled between January and June 2021, COVID-19 was detected among 32.0% (358/1116). Roughly four COVID-19+ community deaths occurred for every facility death. Antemortem testing occurred for 52.6% (302/574) of facility deaths but only 1.8% (10/544) of community deaths and overall, only ~10% of COVID-19+ deaths were identified in life. During peak transmission periods, COVID-19 was detected in ~90% of all deaths. We observed three waves of transmission that peaked in July 2020, January 2021 and ~June 2021: the AE.1 lineage and the Beta and Delta variants, respectively. PCR signals were strongest among those whose deaths were deemed 'probably due to COVID-19', and weakest among children, with an age-dependent increase in PCR signal intensity. CONCLUSIONS: COVID-19 was common among deceased individuals in Lusaka. Antemortem testing was rarely done, and almost never for community deaths. Suspicion that COVID-19 was the cause of deaths was highest for those with a respiratory syndrome and lowest for individuals <19 years.


Assuntos
COVID-19 , Criança , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Zâmbia/epidemiologia , Prevalência , SARS-CoV-2 , Reação em Cadeia da Polimerase , Teste para COVID-19
11.
Malar J ; 20(1): 237, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039358

RESUMO

BACKGROUND: There are a variety of approaches being used for malaria surveillance. While active and reactive case detection have been successful in localized areas of low transmission, concerns over scalability and sustainability keep the approaches from being widely accepted. Mobile health interventions are poised to address these shortcomings by automating and standardizing portions of the surveillance process. In this study, common challenges associated with current data aggregation methods have been quantified, and a web-based mobile phone application is presented to reduce the burden of reporting rapid diagnostic test (RDT) results in low-resource settings. METHODS: De-identified completed RDTs were collected at 14 rural health clinics as part of a malaria epidemiology study at Macha Research Trust, Macha, Zambia. Tests were imaged using the mHAT web application. Signal intensity was measured and a binary result was provided. App performance was validated by: (1) comparative limits of detection, investigated against currently used laboratory lateral flow assay readers; and, (2) receiver operating characteristic analysis comparing the application against visual inspection of RDTs by an expert. Secondary investigations included analysis of time-to-aggregation and data consistency within the existing surveillance structures established by Macha Research Trust. RESULTS: When compared to visual analysis, the mHAT app performed with 91.9% sensitivity (CI 78.7, 97.2) and specificity was 91.4% (CI 77.6, 97.0) regardless of device operating system. Additionally, an analysis of surveillance data from January 2017 through mid-February 2019 showed that while the majority of the data packets from satellite clinics contained correct data, 36% of data points required correction by verification teams. Between November 2018 and mid-February 2019, it was also found that 44.8% of data was received after the expected submission date, although most (65.1%) reports were received within 2 days. CONCLUSIONS: Overall, the mHAT mobile app was observed to be sensitive and specific when compared to both currently available benchtop lateral flow readers and visual inspection. The additional benefit of automating and standardizing LFA data collection and aggregation poses a vital improvement for low-resource health facilities and could increase the accuracy and speed of data reporting in surveillance campaigns.


Assuntos
Coleta de Dados/métodos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária/diagnóstico , Aplicativos Móveis , Serviços de Saúde Rural/estatística & dados numéricos , Testes Diagnósticos de Rotina/normas , Humanos , Projetos Piloto , Zâmbia
12.
Am J Trop Med Hyg ; 104(2): 671-679, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33236715

RESUMO

Malaria elimination strategies are designed to more effectively identify and treat infected individuals to interrupt transmission. One strategy, reactive screen-and-treat, starts with passive detection of symptomatic cases at health facilities. Individuals residing within the index case and neighboring households are screened with a malaria rapid diagnostic test (RDT) and treated if positive. However, it is unclear to what extent this strategy is effective in reducing transmission. Reactive screen-and-treat was implemented in Choma district, Southern Province, Zambia, in 2013, in which residents of the index case and neighboring households within 140 m were screened with an RDT. From March 2016 to July 2018, the screening radius was extended to 250-m, and additional follow-up visits at 30 and 90 days were added to evaluate the strategy. Plasmodium falciparum parasite prevalence was measured using an RDT and by quantitative PCR (qPCR). A 24-single nucleotide polymorphism molecular bar-code assay was used to genotype parasites. Eighty-four index case households with 676 residents were enrolled between March 2016 and March 2018. Within each season, parasite prevalence declined significantly in index households at the 30-day visit and remained low at the 90-day visit. However, parasite prevalence was not reduced to zero. Infections identified by qPCR persisted between study visits and were not identified by RDT. Parasites identified within the same household were most genetically related; however, overall parasite relatedness was low and similar across time and space. Thus, despite implementation of a reactive screen-and-treat program, parasitemia was not eliminated, and persisted in targeted households for at least 3 months.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/diagnóstico , Malária Falciparum/transmissão , Programas de Rastreamento/normas , Plasmodium falciparum/genética , Adolescente , Adulto , Animais , Anopheles/parasitologia , Criança , Pré-Escolar , Estudos Transversais , Características da Família , Feminino , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Masculino , Programas de Rastreamento/estatística & dados numéricos , Parasitemia , Prevalência , Adulto Jovem , Zâmbia/epidemiologia
13.
Malar J ; 19(1): 175, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381005

RESUMO

BACKGROUND: Reactive case detection (RCD) seeks to enhance malaria surveillance and control by identifying and treating parasitaemic individuals residing near index cases. In Zambia, this strategy starts with passive detection of symptomatic incident malaria cases at local health facilities or by community health workers, with subsequent home visits to screen-and-treat residents in the index case and neighbouring (secondary) households within a 140-m radius using rapid diagnostic tests (RDTs). However, a small circular radius may not be the most efficient strategy to identify parasitaemic individuals in low-endemic areas with hotspots of malaria transmission. To evaluate if RCD efficiency could be improved by increasing the probability of identifying parasitaemic residents, environmental risk factors and a larger screening radius (250 m) were assessed in a region of low malaria endemicity. METHODS: Between January 12, 2015 and July 26, 2017, 4170 individuals residing in 158 index and 531 secondary households were enrolled and completed a baseline questionnaire in the catchment area of Macha Hospital in Choma District, Southern Province, Zambia. Plasmodium falciparum prevalence was measured using PfHRP2 RDTs and quantitative PCR (qPCR). A Quickbird™ high-resolution satellite image of the catchment area was used to create environmental risk factors in ArcGIS, and generalized estimating equations were used to evaluate associations between risk factors and secondary households with parasitaemic individuals. RESULTS: The parasite prevalence in secondary (non-index case) households was 0.7% by RDT and 1.8% by qPCR. Overall, 8.5% (n = 45) of secondary households had at least one resident with parasitaemia by qPCR or RDT. The risk of a secondary household having a parasitaemic resident was significantly increased in proximity to higher order streams and marginally with increasing distance from index households. The adjusted OR for proximity to third- and fifth-order streams were 2.97 (95% CI 1.04-8.42) and 2.30 (95% CI 1.04-5.09), respectively, and that for distance to index households for each 50 m was 1.24 (95% CI 0.98-1.58). CONCLUSION: Applying proximity to streams as a screening tool, 16% (n = 3) more malaria-positive secondary households were identified compared to using a 140-m circular screening radius. This analysis highlights the potential use of environmental risk factors as a screening strategy to increase RCD efficiency.


Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Falciparum/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Erradicação de Doenças/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Malária Falciparum/prevenção & controle , Pessoa de Meia-Idade , Plasmodium falciparum/isolamento & purificação , Prevalência , Adulto Jovem , Zâmbia/epidemiologia
14.
BMC Public Health ; 20(1): 216, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050923

RESUMO

BACKGROUND: Despite rapid upscale of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), malaria remains a major source of morbidity and mortality in Zambia. Uptake and utilization of these and novel interventions are often affected by knowledge, attitudes and practices (KAP) amongst persons living in malaria-endemic areas. The aims of this study were to assess malaria KAP of primary caregivers and explore trends in relation to ITN use, IRS acceptance and mosquito density in two endemic communities in Luangwa and Nyimba districts, Zambia. METHODS: A cohort of 75 primary caregivers were assessed using a cross-sectional, forced-choice malaria KAP survey on ITN use, IRS acceptance and initial perception of a novel spatial repellent (SR) product under investigation. Entomological sampling was performed in participant homes using CDC Miniature Light Traps to relate indoor mosquito density with participant responses. RESULTS: Ninety-nine percent of participants cited bites of infected mosquitoes as the route of malaria transmission although other routes were also reported including drinking dirty water (64%) and eating contaminated food (63%). All caregivers agreed that malaria was a life-threatening disease with the majority of caregivers having received malaria information from health centers (86%) and community health workers (51%). Cumulatively, self-reported mosquito net use was 67%. Respondents reportedly liked the SR prototype product but improvements on color, shape and size were suggested. Overall, 398 mosquitoes were captured from light-trap collections, including 49 anophelines and 349 culicines. Insecticide treated nets use was higher in households from which at least one mosquito was captured. CONCLUSIONS: The current study identified misconceptions in malaria transmission among primary caregivers indicating remaining knowledge gaps in educational campaigns. Participant responses also indicated a misalignment between a low perception of IRS efficacy and high stated acceptance of IRS, which should be further examined to better understand uptake and sustainability of other vector control strategies. While ITNs were found to be used in study households, misperceptions between presence of mosquitoes and bite protection practices did exist. This study highlights the importance of knowledge attitudes and practice surveys, with integration of entomological sampling, to better guide malaria vector control product development, strategy acceptance and compliance within endemic communities.


Assuntos
Cuidadores/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Malária/prevenção & controle , População Rural , Adulto , Cuidadores/estatística & dados numéricos , Estudos de Coortes , Estudos Transversais , Feminino , Habitação , Humanos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/administração & dosagem , Malária/epidemiologia , Controle de Mosquitos/métodos , População Rural/estatística & dados numéricos , Zâmbia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA