RESUMO
Allergic reactions can profoundly influence the quality of life. To address the health risks posed by allergens and overcome the permeability limitations of the current filter materials, this work introduces a novel microhoneycomb (MH) material for practical filter applications such as masks. Through a synthesis process integrating ice-templating and a gas-phase post-treatment with silane, MH achieves unprecedented levels of moisture resistance and mechanical stability while preserving the highly permeable microchannels. Notably, MH is extremely elastic, with a 92% recovery rate after being compressed to 80% deformation. The filtration efficiency surpasses 98.1% against pollutant particles that simulate airborne pollens, outperforming commercial counterparts with fifth-fold greater air permeability while ensuring unparalleled user comfort. Moreover, MH offers a sustainable solution, being easily regenerated through back-flow blowing, distinguishing it from conventional nonwoven fabrics. Finally, a prototype mask incorporating MH is presented, demonstrating its immense potential as a high-performance filtration material, effectively addressing health risks posed by allergens and other harmful particles.
RESUMO
In situ 3D computed tomography imaging with statistical analysis successfully revealed the water accumulation and drainage characteristics in the stacked gas diffusion layers (GDLs) and membrane electrode assembly (MEA) of a polymer electrolyte fuel cell. Efficient water drainage at the interface between the cathode GDL and MEA was confirmed upon supplying oxygen to the cathode.
RESUMO
Many unique adsorption properties of metal-organic frameworks (MOFs) have been revealed by diffraction crystallography, visualizing their vacant and guest-loaded crystal structures at the molecular scale. However, it has been challenging to see the spatial distribution of the adsorption behaviors throughout a single MOF particle in a transient equilibrium state. Here, we report three-dimensional (3D) visualization of molecular adsorption behaviors in a single crystalline particle of a MOF by in situ X-ray absorption fine structure spectroscopy combined with computed tomography for the first time. The 3D maps of water-coordinated Co sites in a 100 µm-scale MOF-74-Co crystal were obtained with 1 µm spatial resolution under several water vapor pressures. Through the visualization of the water vapor adsorption process, 3D spectroimaging revealed the mechanism and spatial heterogeneity of guest adsorption inside a single particle of a crystalline MOF.
RESUMO
Iron oxides with various compositions and polymorphs have been widely used as compounds that require reversible redox properties, such as catalysts. However, partial decomposition during phase transitions often causes irreversible degradation of the redox properties of iron oxides. Cr doping into the crystalline framework of iron oxide dendrites improves the stability of the structural transformation of iron oxides. We spatially visualized the FeOx-dendrite phase distribution during oxidation in crystalline dendritic FeOx and Cr-FeOx particles by full-field nano-X-ray absorption fine structure spectroimaging. The spectroimaging visualized propagation in the phase transitions in the individual FeOx particles and changes in the phase transition behaviors of the Cr-FeOx particles. The statistical analysis of the spectroimaging data revealed the phase transition trends in parts of the FeOx and Cr-FeOx particles in three Fe density zones (particle thicknesses) and the probability densities of the phase proportions in the dendrites.
RESUMO
There is little information on the spatial distribution, migration, and valence of Ce species doped as an efficient radical scavenger in a practical polymer electrolyte fuel cell (PEFC) for commercial fuel cell vehicles (FCVs) closely related to a severe reliability issue for long-term PEFC operation. An in situ three-dimensional fluorescence computed tomography-X-ray absorption fine structure (CT-XAFS) imaging technique and an in situ same-view nano-XAFS-scanning electron microscopy (SEM)/energy-dispersive spectrometry (EDS) combination technique were applied for the first time to perform operando spatial visualization and depth-profiling analysis of Ce radical scavengers in a practical PEFC of Toyota MIRAI FCV under PEFC operating conditions. Using these in situ techniques, we successfully visualized and analyzed the domain, density, valence, and migration of Ce scavengers that were heterogeneously distributed in the components of PEFC, such as anode microporous layer, anode catalyst layer, polymer electrolyte membrane (PEM), cathode catalyst layer, and cathode microporous layer. The average Ce valence states in the whole PEFC and PEM were 3.9+ and 3.4+, respectively, and the Ce3+/Ce4+ ratios in the PEM under H2 (anode)-N2 (cathode) at an open-circuit voltage (OCV), H2-air at 0.2 A cm-2, and H2-air at 0.0 A cm-2 were 70 ± 5:30 ± 5%, as estimated by both in situ fluorescence CT-X-ray absorption near-edge spectroscopy (XANES) and nano-XANES-SEM/EDS techniques. The Ce3+ migration rates in the electrolyte membrane toward the anode and cathode electrodes ranged from 0.3 to 3.8 µm h-1, depending on the PEFC operating conditions. Faster Ce3+ migration was not observed with voltage transient response processes by highly time-resolved (100 ms) and spatially resolved (200 nm) nano-XANES imaging. Ce3+ ions were suggested to be coordinated with both Nafion sulfonate (Nfsul) groups and water to form [Ce(Nfsul)x(H2O)y]3+. The Ce migration behavior may also be affected by the spatial density of Ce, interactions of Ce with Nafion, thickness and states of the PEM, and H2O convection, in addition to the PEFC operating conditions. The unprecedented operando imaging of Ce radical scavengers in the practical PEFCs by both in situ three-dimensional (3D) fluorescence CT-XAFS imaging and in situ depth-profiling nano-XAFS-SEM/EDS techniques yields intriguing insights into the spatial distribution, chemical states, and behavior of Ce scavengers under the working conditions for the development of next-generation PEFCs with high long-term reliability and durability.
RESUMO
Ultrafine bimetallic Pt-Ni nanoparticles, which catalyze the oxygen reduction reaction (ORR) efficiently, were successfully prepared in hollow porous carbon spheres (HPCSs) under the assistance of organic molecules. 2,2'-Dipyridylamine (dpa) was found to be most effective in preparing homogeneous small Pt-Ni nanoparticles (2.0 ± 0.4 nm) without the phase separation of Pt and Ni during synthesis, and the assistance of the organic molecules was investigated for the alloy nanoparticle formation. The Pt-Ni nanoparticle/HPCS catalyst synthesized in the presence of dpa exhibited remarkable electrochemical performance in the ORR showing a high mass activity of 3.25 ± 0.14 A mg-1Pt at 0.9 VRHE (13.5-fold higher relative to a commercial Pt/C catalyst), a large electrochemical surface area of 105 ± 8 m2 g-1Pt, and high durability. After 60 000 cycles of accelerated durability testing, the mass activity was still 12.3 times higher than that of the commercial Pt/C catalyst.
RESUMO
Cr-Loaded iron oxide with a dendritic crystalline structure was synthesized and the reversible crystalline phase transition during redox cycling of the iron oxide was investigated. X-ray diffraction and transmission electron microscopy analyses revealed that Cr was well dispersed and loaded in the iron oxide dendrite crystals, whose lattice constant was dependent on the Cr loading. Temperature-programmed oxidation and reduction experiments revealed the reversible redox properties of the Cr-loaded iron oxide dendrites, whose redox temperature was found to be lower than that of Cr-free iron oxide dendrites. In situ Fe K-edge and Cr K-edge X-ray absorption near-edge structure (XANES) analysis indicated that Cr loading extended the redox reaction window for conversion between Fe3O4 and γ-Fe2O3 owing to compressive lattice strain in the iron oxide spinel structures.
RESUMO
We developed a multi-analysis system that can measure in situ time-resolved quick XAFS (QXAFS) and in situ three-dimensional XAFS-CT spatial imaging in the same area of a cathode electrocatalyst layer in a membrane-electrode assembly (MEA) of a polymer electrolyte fuel cell (PEFC) at the BL36XU beamline of SPring-8. The multi-analysis system also achieves ex situ two-dimensional nano-XAFS/STEM-EDS same-view measurements of a sliced MEA fabricated from a given place in the XAFS-CT imaged area at high spatial resolutions under a water-vapor saturated N2 atmosphere using a same-view SiN membrane cell. In this study, we applied the combination method of time-resolved QXAFS/3D XAFS-CT/2D nano-XAFS/STEM-EDS for the first time for the visualization analysis of the anode-gas exchange (AGEX) (simulation of the start-up/shut-down of PEFC vehicles) degradation process of a PEFC MEA Pt/C cathode. The AGEX cycles bring about serious irreversible degradation of both Pt nanoparticles and carbon support due to a spike-like large voltage increase. We could visualize the three-dimensional distribution and two-dimensional depth map of the amount, oxidation state (valence), Pt2+ elution, detachment, and aggregation of Pt species and the formation of carbon voids, where the change and movement of the Pt species in the cathode catalyst layer during the AGEX cycles did not proceed exceeding the 1 µm region. It is very different from the case of an ADT (an accelerated durability test between 0.6-1.0 VRHE)-degraded MEA. We discuss the spatiotemporal behavior of the AGEX degradation process and the degradation mechanism.
RESUMO
The ceria-based catalyst incorporated with Cr and a trace amount of Rh (Cr0.19Rh0.06CeOz) was prepared and the reversible redox performances and oxidation catalysis of CO and alcohol derivatives with O2 at low temperatures (<373 K) were investigated. In situ X-ray absorption fine structure (XAFS), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)-EDS/EELS and temperature-programmed reduction/oxidation (TPR/TPO) revealed the structures and redox mechanisms of three metals in Cr0.19Rh0.06CeOz: dispersed Rh3+δ species (<1 nm) and Cr6-γO3-x nanoparticles (â¼1 nm) supported on CeO2 in Cr0.19Rh0.06CeOz were transformed to Rh nanoclusters, Cr(OH)3 species and CeO2-x with two Ce3+-oxide layers at the surface in a concerted activation manner of the three metal species with H2.
RESUMO
Three-dimensional imaging using X-ray as a probe is state-of-the-art for the characterization of heterogeneous materials. In addition to simple imaging of sample morphology, imaging of elemental distribution and chemical states provides advanced maps of key structural parameters of functional materials. The combination of X-ray absorption fine structure (XAFS) spectroscopy and three-dimensional imaging such as computed tomography (CT) can visualize the three-dimensional distribution of target elements, their valence states, and local structures in a non-destructive manner. In this personal account, our recent results on the three-dimensional XAFS imaging for Pt cathode catalysts in the membrane electrode assembly (MEA) of polymer electrolyte fuel cell (PEFC) are introduced. The distribution and chemical states of Pt cathode catalysts in MEAs remarkably change under PEFC operating conditions, and the 3D XAFS imaging revealed essential events in PEFC MEAs.
RESUMO
The crystal structure changes and iron exsolution behavior of a series of oxygen-deficient lanthanum strontium ferrite (La0.6Sr0.4FeO3-δ , LSF) samples under various inert and reducing conditions up to a maximum temperature of 873 K have been investigated to understand the role of oxygen and iron deficiencies in both processes. Iron exsolution occurs in reductive environments at higher temperatures, leading to the formation of Fe rods or particles at the surface. Utilizing multiple ex situ and in situ methods (in situ X-ray diffraction (XRD), in situ thermogravimetric analysis (TGA), and scanning X-ray absorption near-edge spectroscopy (XANES)), the thermodynamic and kinetic limitations are accordingly assessed. Prior to the iron exsolution, the perovskite undergoes a nonlinear shift of the diffraction peaks to smaller 2θ angles, which can be attributed to a rhombohedral-to-cubic (R3Ìc to Pm3Ìm) structural transition. In reducing atmospheres, the cubic structure is stabilized upon cooling to room temperature, whereas the transition is suppressed under oxidizing conditions. This suggests that an accumulation of oxygen vacancies in the lattice stabilize the cubic phase. The exsolution itself is shown to exhibit a diffusion-limited Avrami-like behavior, where the transport of iron to the Fe-depleted surface-near region is the rate-limiting step.
RESUMO
The cerium density and valence in micrometer-size platinum-supported cerium-zirconium oxide Pt/Ce2 Zr2 Ox (x=7-8) three-way catalyst particles were successfully mapped by hard X-ray spectro-ptychography (ptychographic-X-ray absorption fine structure, XAFS). The analysis of correlation between the Ce density and valence in ptychographic-XAFS images suggested the existence of several oxidation behaviors in the oxygen storage process in the Ce2 Zr2 Ox particles. Ptychographic-XAFS will open up the nanoscale chemical imaging and structural analysis of heterogeneous catalysts.
RESUMO
The three-dimensional (3D) distribution and oxidation state of a Pt cathode catalyst in a practical membrane electrode assembly (MEA) were visualized in a practical polymer electrolyte fuel cell (PEFC) under fuel-cell operating conditions. Operando 3D computed-tomography imaging with X-ray absorption near edge structure (XANES) spectroscopy (CT-XANES) clearly revealed the heterogeneous migration and degradation of Pt cathode catalyst in an MEA during accelerated degradation test (ADT) of PEFC. The degradative Pt migration proceeded over the entire cathode catalyst layer and spread to MEA depth direction into the Nafion membrane.
RESUMO
The spatial distribution of Ce(3+) and Ce(4+) in each particle of Ce2 Zr2 Ox in a three-way conversion catalyst system was successfully imaged during an oxygen storage/release cycle by scanning X-ray absorption fine structure (XAFS) using hard X-ray nanobeams. For the first time, nano-XAFS imaging visualized and identified the modes of non-uniform oxygen diffusion from the interface of Pt catalyst and Ce2 Zr2 Ox support and the active parts in individual catalyst particles.
RESUMO
When a core level is excited by circularly polarized light, the angular momentum of light is transferred to the emitted photoelectron, which can be confirmed by the parallax shift of the forward focusing peak (FFP) direction in a stereograph of atomic arrangement. No angular momentum has been believed to be transferred to normal Auger electrons resulting from the decay process filling core hole after photoelectron ejection. We succeeded in detecting a non-negligible circular dichroism contrast in a normal Auger electron diffraction from a nonmagnetic Cu(001) surface far off from the absorption threshold. Moreover, we detected angular-momentum-polarized Cu L(3)M(4,5)M(4,5) Auger electrons at the L(3) absorption threshold, where the excited core electron is trapped at the conduction band. From the kinetic energy dependence of the Auger electron FFP parallax shift, we found that the angular momentum is transferred to the Auger electron most effectively in the case of the (1)S(0) two-hole creation.
RESUMO
Structures of Pd/zeolites immersed in solvents were measured by in situ X-ray absorption fine structure (XAFS). Systematic studies revealed that the selection of an appropriate support (USY-zeolite), thermal treatment temperature of USY, solvent (o-xylene), H(2) partial pressure (6%), and the use of a Pd amine complex affect the structure of Pd. As a result, we found that monomeric Pd can be obtained in the USY support with H(2) bubbling in o-xylene. The structural properties of Pd correlate well with its catalytic performance in the Suzuki-Miyaura coupling reactions; a very high TON of up to 11,000,000 was obtained over the monomeric Pd.