Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(18): 4566-4575, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38662201

RESUMO

Deep eutectic solvents (DESs) are low-melting mixtures, often prepared from a salt and a molecular hydrogen bond donor. Like ionic liquids, DESs that contain at least one sufficiently amphiphilic component can form bicontinuous nanostructures consisting of polar and nonpolar domains, although this has not been widely explored for many DES combinations. Here, the bulk nanostructures of DESs comprising tetraalkylammonium bromide salts (tetrabutylammonium bromide, tetraoctylammonium bromide, and methyltrioctylammonium bromide) with alkanols and alkanoic acids of systematically varied chain lengths (C2, C6, C8, and C10) as hydrogen bond donors have been studied. Small-angle X-ray scattering techniques were used to identify the relationship between the alkyl chain length and functionality of the hydrogen bond donor on the nature of the amphiphilic nanostructures formed. These findings demonstrated that the amphiphilic nanostructures of the DESs were not affected by the functional group on the hydrogen bond donor, with these nanostructures influenced primarily by both the absolute and relative alkyl chain lengths of the salt and hydrogen bond donor.

2.
Chem Commun (Camb) ; 58(98): 13572-13575, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36412193

RESUMO

The effect of the amphiphilic nanostructure of ionic liquids on the dehydration of secondary alcohols to alkenes has been investigated. The influence of these nanostructures was inverted when an acid catalyst was added to the reaction. This phenomenon was ascribed to a balance between ion-solute interactions and the formation of solute-catalyst hydrogen bonds, highlighting the complex interplay between interactions and reaction outcomes in these nanostructured solvent systems.


Assuntos
Líquidos Iônicos , Álcoois
3.
Phys Chem Chem Phys ; 22(20): 11593-11608, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400798

RESUMO

Ionic liquids (ILs) containing sufficiently long alkyl chains form amphiphilic nanostructures with well-defined polar and non-polar domains. Here we have explored the robustness of these amphiphilic nanostructures to added solutes and gained insight into how the nature of the solute and IL ions affect the partitioning of these solutes within the nanostructured domains of ILs. To achieve this, small angle X-ray scattering (SAXS) investigations were performed and discussed for mixtures of 9 different molecular compounds with 6 different ILs containing imidazolium cations. The amphiphilic nanostructure of ILs persisted to high solute concentrations, over 50 mol% of added solute for most 1-butyl-3-methylimidazolium ILs and above 80 mol% for most 1-decyl-3-methylimidazolium ILs. Solute partitioning within these domains was found to be controlled by the inherent polarity and size of the solute, as well as specific interactions between the solute and IL ions, with SAXS results corroborated with IR spectroscopy and molecular dynamics simulations. Molecular dynamics simulations also revealed the ability to induce π+-π+ stacking between imidazolium cations through the use of these added molecular compounds. Collectively, these results provide scope for the selection of IL ions to rationally influence and control the partitioning behaviour of given solutes within the amphiphilic nanostructure of ILs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...