Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(2): e2200294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36281903

RESUMO

Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.


Assuntos
Amiloide , Peptídeos , Cricetinae , Animais , Amiloide/química , Amiloide/metabolismo , Células CHO , Cricetulus , Estrutura Secundária de Proteína
2.
ACS Biomater Sci Eng ; 7(10): 4798-4808, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515483

RESUMO

Gradients of bioactive molecules play a crucial role in various biological processes like vascularization, tissue regeneration, or cell migration. To study these complex biological systems, it is necessary to control the concentration of bioactive molecules on their substrates. Here, we created a photochemical strategy to generate gradients using amyloid-like fibrils as scaffolds functionalized with a model epitope, that is, the integrin-binding peptide RGD, to modulate cell adhesion. The self-assembling ß-sheet forming peptide (CKFKFQF) was connected to the RGD epitope via a photosensitive nitrobenzyl linker and assembled into photoresponsive nanofibrils. The fibrils were spray-coated on glass substrates and macroscopic gradients were generated by UV-light over a centimeter-scale. We confirmed the gradient formation using matrix-assisted laser desorption ionization mass spectroscopy imaging (MALDI-MSI), which directly visualizes the molecular species on the surface. The RGD gradient was used to instruct cells. In consequence, A549 adapted their adhesion properties in dependence of the RGD-epitope density.


Assuntos
Amiloide , Oligopeptídeos , Células A549 , Adesão Celular , Movimento Celular , Humanos , Peptídeos
3.
Cell Rep ; 24(1): 27-37.e4, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972788

RESUMO

Multiple sulfatase deficiency (MSD) is a fatal, inherited lysosomal storage disorder characterized by reduced activities of all sulfatases in patients. Sulfatases require a unique post-translational modification of an active-site cysteine to formylglycine that is catalyzed by the formylglycine-generating enzyme (FGE). FGE mutations that affect intracellular protein stability determine residual enzyme activity and disease severity in MSD patients. Here, we show that protein disulfide isomerase (PDI) plays a pivotal role in the recognition and quality control of MSD-causing FGE variants. Overexpression of PDI reduces the residual activity of unstable FGE variants, whereas inhibition of PDI function rescues the residual activity of sulfatases in MSD fibroblasts. Mass spectrometric analysis of a PDI+FGE variant covalent complex allowed determination of the molecular signature for FGE recognition by PDI. Our findings highlight the role of PDI as a disease modifier in MSD, which may also be relevant for other ER-associated protein folding pathologies.


Assuntos
Retículo Endoplasmático/metabolismo , Glicina/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Dissulfetos/metabolismo , Estabilidade Enzimática , Glicina/biossíntese , Humanos , Doença da Deficiência de Múltiplas Sulfatases/enzimologia , Proteínas Mutantes/metabolismo , Mutação/genética , Peptídeos/química
4.
EMBO J ; 31(6): 1518-28, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22354036

RESUMO

In eukaryotic cells, Hsp90 chaperones assist late folding steps of many regulatory protein clients by a complex ATPase cycle. Binding of clients to Hsp90 requires prior interaction with Hsp70 and a transfer reaction that is mediated by the co-chaperone Sti1/Hop. Sti1 furthers client transfer by inhibiting Hsp90's ATPase activity. To better understand how Sti1 prepares Hsp90 for client acceptance, we characterized the interacting domains and analysed how Hsp90 and Sti1 mutually influence their conformational dynamics using hydrogen exchange mass spectrometry. Sti1 stabilizes several regions in all three domains of Hsp90 and slows down dissociation of the Hsp90 dimer. Our data suggest that Sti1 inhibits Hsp90's ATPase activity by preventing N-terminal dimerization and docking of the N-terminal domain with the middle domain. Using crosslinking and mass spectrometry we identified Sti1 segments, which are in close vicinity of the N-terminal domain of Hsp90. We found that the length of the linker between C-terminal dimerization domain and the C-terminal MEEVD motif is important for Sti1 association rates and propose a kinetic model for Sti1 binding to Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Dimerização , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...