Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143757

RESUMO

Charge detection mass spectrometry (CDMS) is a well-established technique that provides direct mass spectral outputs regardless of analyte heterogeneity or molecular weight. Over the past few years, it has been demonstrated that CDMS can be multiplexed on Orbitrap analyzers utilizing an integrated approach termed individual ion mass spectrometry (I2MS). To further increase adaptability, robustness, and throughput of this technique, here, we present a method that utilizes numerous integrated equipment components including a Kingfisher system, SampleStream platform, and Q Exactive mass spectrometer to provide a fully automated workflow for immunoprecipitation, sample preparation, injection, and subsequent I2MS acquisition. This automated workflow has been applied to a cohort of 58 test subjects to determine individualized patient antibody responses to SARS-CoV-2 antigens. Results from a range of serum donors include 37 subject I2MS spectra that contained a positive COVID-19 antibody response and 21 I2MS spectra that contained a negative COVID-19 antibody response. This high-throughput automated I2MS workflow can currently process over 100 samples per week and is general for making immunoprecipitation-MS workflows achieve proteoform resolution.

2.
Anal Chem ; 96(11): 4455-4462, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38458998

RESUMO

The functions of proteins bearing multiple post-translational modifications (PTMs) are modulated by their modification patterns, yet precise characterization of them is difficult. MEK1 (also known as MAP2K1) is one such example that acts as a gatekeeper of the mitogen-activating protein kinase (MAPK) pathway and propagates signals via phosphorylation by upstream kinases. In principle, top-down mass spectrometry can precisely characterize whole MEK1 proteoforms, but fragmentation methods that would enable the site-specific characterization of labile modifications on 43 kDa protein ions result in overly dense tandem mass spectra. By using the charge-detection method called individual ion mass spectrometry, we demonstrate how complex mixtures of phosphoproteoforms and their fragment ions can be reproducibly handled to provide a "bird's eye" view of signaling activity through mapping proteoform landscapes in a pathway. Using this approach, the overall stoichiometry and distribution of 0-4 phosphorylations on MEK1 was determined in a cellular model of drug-resistant metastatic melanoma. This approach can be generalized to other multiply modified proteoforms, for which PTM combinations are key to their function and drug action.


Assuntos
Mitógenos , Proteínas Quinases , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Peptídeos e Proteínas de Sinalização Intercelular , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...