Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2493, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524156

RESUMO

IRE1α is constitutively active in several cancers and can contribute to cancer progression. Activated IRE1α cleaves XBP1 mRNA, a key step in production of the transcription factor XBP1s. In addition, IRE1α cleaves select mRNAs through regulated IRE1α-dependent decay (RIDD). Accumulating evidence implicates IRE1α in the regulation of lipid metabolism. However, the roles of XBP1s and RIDD in this process remain ill-defined. In this study, transcriptome and lipidome profiling of triple negative breast cancer cells subjected to pharmacological inhibition of IRE1α reveals changes in lipid metabolism genes associated with accumulation of triacylglycerols (TAGs). We identify DGAT2 mRNA, encoding the rate-limiting enzyme in TAG biosynthesis, as a RIDD target. Inhibition of IRE1α, leads to DGAT2-dependent accumulation of TAGs in lipid droplets and sensitizes cells to nutritional stress, which is rescued by treatment with the DGAT2 inhibitor PF-06424439. Our results highlight the importance of IRE1α RIDD activity in reprograming cellular lipid metabolism.


Assuntos
Endorribonucleases , Metabolismo dos Lipídeos , Neoplasias , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 119001, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705817

RESUMO

Endoplasmic Reticulum (ER) stress signaling is an adaptive mechanism triggered when protein folding demand overcomes the folding capacity of this compartment, thereby leading to the accumulation of improperly folded proteins. This stress signaling pathway is named the Unfolded Protein Response (UPR) and aims at restoring ER homeostasis. However, if this fails, mechanisms orienting cells towards death processes are initiated. Herein, we summarize the most recent findings connecting ER stress and the UPR with identified death mechanisms including apoptosis, necrosis, pyroptosis, ferroptosis, and autophagy. We highlight new avenues that could be investigated and controlled through actionable mechanisms in physiology and pathology.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Animais , Apoptose , Autofagia , Ferroptose , Regulação da Expressão Gênica , Humanos
3.
Cancers (Basel) ; 10(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248920

RESUMO

In 2018, in the US alone, it is estimated that 268,670 people will be diagnosed with breast cancer, and that 41,400 will die from it. Since breast cancers often become resistant to therapies, and certain breast cancers lack therapeutic targets, new approaches are urgently required. A cell-stress response pathway, the unfolded protein response (UPR), has emerged as a promising target for the development of novel breast cancer treatments. This pathway is activated in response to a disturbance in endoplasmic reticulum (ER) homeostasis but has diverse physiological and disease-specific functions. In breast cancer, UPR signalling promotes a malignant phenotype and can confer tumours with resistance to widely used therapies. Here, we review several roles for UPR signalling in breast cancer, highlighting UPR-mediated therapy resistance and the potential for targeting the UPR alone or in combination with existing therapies.

4.
Nat Commun ; 9(1): 3267, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111846

RESUMO

Triple-negative breast cancer (TNBC) lacks targeted therapies and has a worse prognosis than other breast cancer subtypes, underscoring an urgent need for new therapeutic targets and strategies. IRE1 is an endoplasmic reticulum (ER) stress sensor, whose activation is predominantly linked to the resolution of ER stress and, in the case of severe stress, to cell death. Here we demonstrate that constitutive IRE1 RNase activity contributes to basal production of pro-tumorigenic factors IL-6, IL-8, CXCL1, GM-CSF, and TGFß2 in TNBC cells. We further show that the chemotherapeutic drug, paclitaxel, enhances IRE1 RNase activity and this contributes to paclitaxel-mediated expansion of tumor-initiating cells. In a xenograft mouse model of TNBC, inhibition of IRE1 RNase activity increases paclitaxel-mediated tumor suppression and delays tumor relapse post therapy. We therefore conclude that inclusion of IRE1 RNase inhibition in therapeutic strategies can enhance the effectiveness of current chemotherapeutics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular , Linhagem Celular Tumoral , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Inibidores Enzimáticos/administração & dosagem , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos Nus , Paclitaxel/administração & dosagem , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Neoplasias de Mama Triplo Negativas/genética
5.
Semin Cancer Biol ; 33: 57-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25814342

RESUMO

Cancer cells are exposed to intrinsic (oncogene) or extrinsic (microenvironmental) challenges, leading to activation of stress response pathways. The unfolded protein response (UPR) is the cellular response to endoplasmic reticulum (ER) stress and plays a pivotal role in tumor development. Depending on ER stress intensity and duration, the UPR is either pro-survival to preserve ER homeostasis or pro-death if the stress cannot be resolved. On one hand, the adaptive arm of the UPR is essential for cancer cells to survive the harsh conditions they are facing, and on the other hand, cancer cells have evolved mechanisms to bypass ER stress-induced cell death, thereby conferring them with a selective advantage for malignant transformation. Therefore, the mechanisms involved in the balance between survival and death outcomes of the UPR may be exploited as therapeutic tools to treat cancer.


Assuntos
Apoptose , Neoplasias/metabolismo , Neoplasias/patologia , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/metabolismo , Trifosfato de Adenosina/química , Animais , Linhagem da Célula , Sobrevivência Celular , Transformação Celular Neoplásica , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Homeostase , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...