Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 13(8): 1281-1295, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404067

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS). They commonly comprise N-alkylated indole, indazole, or 7-azaindole scaffolds with amide-linked pendant amino acid groups. To explore the contribution of the amino acid side chain to the cannabinoid pharmacology of SCRA NPS, a systematic library of side chain-modified SCRAs was prepared based on the recent detections of amino acid derivatives 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), and 20 (NNL-1). In vitro binding affinities and functional activities at cannabinoid type 1 and 2 receptors (CB1 and CB2, respectively) were determined for all the library members using radioligand competition experiments and a fluorescence-based membrane potential assay. Binding affinities and functional activities varied widely across compounds (Ki = 0.32 to >10 000 nM, EC50 = 0.24-1259 nM), with several clear structure-activity relationships (SARs) emerging. Affinity and potency at CB1 changed as a function of the heterocyclic core (indazole > indole > 7-azaindole) and the pendant amino acid side chain (tert-butyl > iso-propyl > iso-butyl > benzyl > ethyl > methyl > hydrogen). Ensemble docking at CB1 revealed a clear steric basis for observed SAR trends. Interestingly, although 15 (PX-1) and 19 (PX-2) have been detected in recreational drug markets, they failed to induce centrally CB1-mediated effects (e.g., hypothermia) in mice using radiobiotelemetry. Together, these data provide insights regarding structural contributions to the cannabimimetic profiles of 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), 20 (NNL-1), and other SCRA NPS.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Animais , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/química , Fármacos do Sistema Nervoso Central , Indazóis/química , Indazóis/farmacologia , Camundongos , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptores de Canabinoides , Valina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...