Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13107, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849451

RESUMO

The environmental risk of Lyme disease, defined by the density of Ixodes scapularis ticks and their prevalence of Borrelia burgdorferi infection, is increasing across the Ottawa, Ontario region, making this a unique location to explore the factors associated with environmental risk along a residential-woodland gradient. In this study, we collected I. scapularis ticks and trapped Peromyscus spp. mice, tested both for tick-borne pathogens, and monitored the intensity of foraging activity by deer in residential, woodland, and residential-woodland interface zones of four neighbourhoods. We constructed mixed-effect models to test for site-specific characteristics associated with densities of questing nymphal and adult ticks and the infection prevalence of nymphal and adult ticks. Compared to residential zones, we found a strong increasing gradient in tick density from interface to woodland zones, with 4 and 15 times as many nymphal ticks, respectively. Infection prevalence of nymphs and adults together was 15 to 24 times greater in non-residential zone habitats. Ecological site characteristics, including soil moisture, leaf litter depth, and understory density, were associated with variations in nymphal density and their infection prevalence. Our results suggest that high environmental risk bordering residential areas poses a concern for human-tick encounters, highlighting the need for targeted disease prevention.


Assuntos
Borrelia burgdorferi , Florestas , Ixodes , Doença de Lyme , Animais , Ixodes/microbiologia , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/patogenicidade , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Doença de Lyme/microbiologia , Prevalência , Ontário/epidemiologia , Peromyscus/microbiologia , Ninfa/microbiologia , Ecossistema , Humanos , Densidade Demográfica , Camundongos , Cervos/microbiologia
2.
PLoS One ; 16(2): e0246484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539458

RESUMO

Canadians face an emerging threat of Lyme disease due to the northward expansion of the tick vector, Ixodes scapularis. We evaluated the degree of I. scapularis population establishment and Borrelia burgdorferi occurrence in the city of Ottawa, Ontario, Canada from 2017-2019 using active surveillance at 28 sites. We used a field indicator tool developed by Clow et al. to determine the risk of I. scapularis establishment for each tick cohort at each site using the results of drag sampling. Based on results obtained with the field indicator tool, we assigned each site an ecological classification describing the pattern of tick colonization over two successive cohorts (cohort 1 was comprised of ticks collected in fall 2017 and spring 2018, and cohort 2 was collected in fall 2018 and spring 2019). Total annual site-specific I. scapularis density ranged from 0 to 16.3 ticks per person-hour. Sites with the highest density were located within the Greenbelt zone, in the suburban/rural areas in the western portion of the city of Ottawa, and along the Ottawa River; the lowest densities occurred at sites in the suburban/urban core. B. burgdorferi infection rates exhibited a similar spatial distribution pattern. Of the 23 sites for which data for two tick cohorts were available, 11 sites were classified as "high-stable", 4 were classified as "emerging", 2 were classified as "low-stable", and 6 were classified as "non-zero". B. burgdorferi-infected ticks were found at all high-stable sites, and at one emerging site. These findings suggest that high-stable sites pose a risk of Lyme disease exposure to the community as they have reproducing tick populations with consistent levels of B. burgdorferi infection. Continued surveillance for I. scapularis, B. burgdorferi, and range expansion of other tick species and emerging tick-borne pathogens is important to identify areas posing a high risk for human exposure to tick-borne pathogens in the face of ongoing climate change and urban expansion.


Assuntos
Ixodes/microbiologia , Ixodes/patogenicidade , Doença de Lyme/transmissão , Animais , Borrelia burgdorferi/patogenicidade , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Ontário/epidemiologia
3.
Can Commun Dis Rep ; 46(10): 354-361, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315999

RESUMO

BACKGROUND: Lyme disease is an emerging vector-borne zoonotic disease of increasing public health importance in Canada. As part of its mandate, the Canadian Lyme Disease Research Network (CLyDRN) launched a pan-Canadian sentinel surveillance initiative, the Canadian Lyme Sentinel Network (CaLSeN), in 2019. OBJECTIVES: To create a standardized, national sentinel surveillance network providing a real-time portrait of the evolving environmental risk of Lyme disease in each province. METHODS: A multicriteria decision analysis (MCDA) approach was used in the selection of sentinel regions. Within each sentinel region, a systematic drag sampling protocol was performed in selected sampling sites. Ticks collected during these active surveillance visits were identified to species, and Ixodes spp. ticks were tested for infection with Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, Babesia microti and Powassan virus. RESULTS: In 2019, a total of 567 Ixodes spp. ticks (I. scapularis [n=550]; I. pacificus [n=10]; and I. angustus [n=7]) were collected in seven provinces: British Columbia, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia and Prince Edward Island. The highest mean tick densities (nymphs/100 m2) were found in sentinel regions of Lunenburg (0.45), Montréal (0.43) and Granby (0.38). Overall, the Borrelia burgdorferi prevalence in ticks was 25.2% (0%-45.0%). One I. angustus nymph from British Columbia was positive for Babesia microti, a first for the province. The deer tick lineage of Powassan virus was detected in one adult I. scapularis in Nova Scotia. CONCLUSION: CaLSeN provides the first coordinated national active surveillance initiative for tick-borne disease in Canada. Through multidisciplinary collaborations between experts in each province, the pilot year was successful in establishing a baseline for Lyme disease risk across the country, allowing future trends to be detected and studied.

4.
PLoS One ; 15(9): e0238126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915794

RESUMO

The blacklegged tick, Ixodes scapularis, is established in several regions of Ontario, Canada, and continues to spread into new geographic areas across the province at a rapid rate. This poses a significant public health risk since I. scapularis transmits the Lyme disease-causing bacterium, Borrelia burgdorferi, and other pathogens of potential public health concern. The objective of this study was to develop species distribution models for I. scapularis and B. burgdorferi to predict and compare the potential distributions of the tick vector and the Lyme disease pathogen as well as the ecological factors most important for species establishment. Ticks were collected via tick dragging at 120 sites across southern, central, and eastern Ontario between 2015 and 2018 and tested for tick-borne pathogens. A maximum entropy (Maxent) approach was used to model the potential distributions of I. scapularis and B. burgdorferi. Two independent datasets derived from tick dragging at 25 new sites in 2019 and ticks submitted by the public to local health units between 2015 and 2017 were used to validate the predictive accuracy of the models. The model for I. scapularis showed high suitability for blacklegged ticks in eastern Ontario and some regions along the shorelines of the Great Lakes, and moderate suitability near Algonquin Provincial Park and the Georgian Bay with good predictive accuracy (tick dragging 2019: AUC = 0.898; ticks from public: AUC = 0.727). The model for B. burgdorferi showed a similar predicted distribution but was more constrained to eastern Ontario, particularly between Ottawa and Kingston, and along Lake Ontario, with similarly good predictive accuracy (tick dragging 2019: AUC = 0.958; ticks from public: AUC = 0.863. The ecological variables most important for predicting the distributions of I. scapularis and B. burgdorferi included elevation, distance to deciduous and coniferous forest, proportions of agricultural land, water, and infrastructure, mean summer/spring temperature, and cumulative annual degree days above 0°C. Our study presents a novel application of species distribution modelling for I. scapularis and B. burgdorferi in Ontario, Canada, and provides an up to date projection of their potential distributions for public health knowledge users.


Assuntos
Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Modelos Estatísticos , Carrapatos/microbiologia , Animais , Área Sob a Curva , Ecossistema , Humanos , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Ontário , Curva ROC
5.
Ticks Tick Borne Dis ; 11(2): 101361, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31874797

RESUMO

Recent studies have highlighted the occurrence and distribution of Ixodes scapularis ticks infected with Borrelia burgdorferi sensu stricto (s.s.) around the city of Ottawa, Ontario, Canada, and the need for strategies to mitigate the risk of human exposure and infection. We conducted a field study from July to October 2018 to examine the effectiveness of ecotonal woodchip borders as an environmental control method to suppress the density of host-seeking ticks along recreational trails in Ottawa. We used an experimental design with ten 100-m trail replicates randomized to intervention or control groups, and monitored questing tick density at weekly intervals in mid-summer and early fall. We compared questing tick density between woodchip-treated and untreated trails using a mixed-effects Poisson regression model. Of the 138 I. scapularis ticks collected, there were 86 adult and nymphal ticks, 37 (43 %) of which were positive for B. burgdorferi s.s. A total of 58 Haemaphysalis leporispalustris were also collected. Mean combined adult and nymphal I. scapularis density was 1.15 (1.40 standard deviation; SD) per 100 m in the control group compared to 0.28 (0.56 SD) per 100 m in the intervention group, reflecting a 75 % reduction in questing tick density on trail replicates treated with woodchip borders (p < 0.001). An effect of the intervention was observed in both sampling periods. This study indicates that woodchip borders may be an effective strategy to suppress questing tick density along trail margins where recreational trail users are more active, thereby reducing the likelihood of tick encounters.


Assuntos
Florestas , Ixodidae/fisiologia , Controle de Ácaros e Carrapatos/métodos , Animais , Feminino , Ixodes , Ixodidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Ontário , Densidade Demográfica , Controle de Ácaros e Carrapatos/instrumentação , Madeira
6.
Sci Rep ; 9(1): 16652, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723147

RESUMO

In eastern North America, including Canada, Lyme disease is caused by Borrelia burgdorferi sensu stricto and transmitted to humans by the blacklegged tick, Ixodes scapularis. The last decade has seen a growing incidence of Lyme disease in Canada, following the northward range expansion of I. scapularis tick populations from endemic areas in eastern United States. This may be attributable to movement of the many hosts that they parasitize, including songbirds, deer and small mammals. In this study, we wanted to test the effect of spatial, temporal and ecological variables, on blacklegged tick density and infection rates, near the northern limit of their distribution in Ontario and Quebec, Canada. We found an effect of both proportion of forested areas and distance to roads, on density of I. scapularis ticks and prevalence of infection by B. burgdorferi. We also found an effect of both sampling year and ordinal sampling data on prevalence of infection by B. burgdorferi. In six adjacent sites showing evidence of reproducing I. scapularis populations, we found that forest composition and structure influenced density of I. scapularis ticks. Our results suggest that blacklegged tick density and infection rate in Canada may be influenced by a variety of factors.


Assuntos
Vetores Aracnídeos/microbiologia , Doenças das Aves/parasitologia , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Doença de Lyme/transmissão , Infestações por Carrapato/veterinária , Animais , Doenças das Aves/epidemiologia , Cervos/parasitologia , Ixodes/classificação , Doença de Lyme/epidemiologia , Densidade Demográfica , Prevalência , Quebeque/epidemiologia , Aves Canoras/parasitologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...