RESUMO
Ruminant fascioliasis is a neglected yet important tropical zoonotic disease that affects both the livestock and humans. The disease has a worldwide distribution, and Malaysia is one of the countries that face problems related to this parasite. These retrospective studies were conducted in Makmal Diagnosa Veterinar Kota Kinabalu (MDVKK) and Sabah Meat Technology Centre (SMTC), Kinarut over a period of eleven years (2008-2018). For MDVKK, the overall occurrence of fascioliasis was 24.9%. Out of 769 cattle's and buffaloes' faecal samples submitted, Fasciola spp ova were detected in 189 of the samples. A total of 2297 cattle, buffaloes, and goats were slaughtered at SMTC over that period, and 21 livers were condemned due to fascioliasis, giving the total occurrence of 0.91%. This investigation provides information on the occurrence of ruminant fascioliasis in Sabah, East Malaysia. The results from this study highlight the alarming incidence of fascioliasis and the urgent need for action to control this neglected tropical disease in East Malaysia.
RESUMO
(1) Background: The objective of this study was to determine the prevalence of T. gondii in meats of cattle, goat and sheep from wet markets in Klang Valley, and abattoirs in Selangor, Malaysia; (2) Methods: A total of 192 meat samples were purchased from 51 wet markets in six districts in Klang Valley (Gombak, Klang, Kuala Lumpur, Hulu Langat, Petaling and Putrajaya). Meanwhile, a total of 200 diaphragm samples were collected from two government abattoirs located in Shah Alam and Banting, Selangor. All meat juices from samples were subjected to an indirect-ELISA kit for the presence of T. gondii IgG antibodies. Furthermore, all 184 meat samples of goat and sheep were subjected to conventional nested PCR (B1 genes) for the detection of T. gondii DNA; (3) Results: T. gondii antibodies were detected in 25% (n = 98/392) of the samples with seroprevalence of 9.1% (19/208, CI: 5.9%-13.8%) in cattle meat; 54.7% (41/75, 95% CI: 43.5%-65.4%) in goat meat and 34.9% (38/109, CI: 26.6%-44.2%) in sheep meat. No T. gondii DNA was detected in any of the meat samples of goat and sheep. T. gondii seropositivity in wet market samples was higher in goat (OR = 37.1 CI 12.4-110.3) and sheep meat (OR 9.03 CI: 3.28-24.8) compared to cattle meat (OR = 1.0) At univariate level, meat from non-licensed abattoirs (OR = 6.0 CI: 2.9-12.3) and female animals (OR = 6.7; CI 1.9-22.6) had higher risks of being seropositive for T. gondii antibodies than licensed abattoirs and male animals, respectively. (4) Conclusions: This is the first report of seroprevalence of T. gondii in ruminant meats for human consumption in Malaysia. The findings signified high exposure of meat samples from wet markets to T. gondii and the need for control measures to reduce the likelihood of infection when such raw or undercooked meats are consumed.
RESUMO
BACKGROUND: A number of factors are known to reduce fertility rate in animals and one of the important categories of such factors is chromosome anomalies. They can occur with or without causing phenotypic abnormalities on animals; in some cases, they may directly affect meiosis, gametogenesis and the viability of conceptus. In many instances, balanced structural rearrangements can be transmitted to offspring, affecting fertility in subsequent generations. AIM: This work investigated the occurrence of chromosome aberrations in Rusa timorensis, Rusa unicolor and Axis axis raised in a nucleus deer farm in Malaysia with a history of declining fertility of unknown origin. MATERIALS & METHODS: Blood samples were collected from 60 animals through venipuncture, cultured for 72 h and arrested at metaphase. SmartType® and Ideokar® software were used to karyotype the chromosomes. RESULTS: We found 15 out of the 60 animals screened from both sexes harbor some form of chromosome aberration. Chromosomal aberrations exist at the rate of 25% and may not be unconnected with the observed reduced fertility on the farm. Further investigations should be carried out, especially on the offspring of the studied animals to transmission of these aberrations. The animals that are confirmed to transmit the chromosomal aberrations should be culled to arrest the propagation of their abnormalities.