Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 87: 73-82, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34120071

RESUMO

PURPOSE: In modulated radiotherapy, breathing motion can lead to Interplay (IE) and Blurring (BE) effects that can modify the delivered dose. The aim of this work is to present the implementation, the validation and the use of an open-source Monte-Carlo (MC) model that computes the delivered dose including these motion effects. METHODS: The MC model of the Varian TrueBeam was implemented using GATE. The dose delivered by different modulated plans is computed for several breathing patterns. A validation of these MC predictions is achieved by a comparison with measurements performed using a dedicated programmable motion platform, carrying a quality assurance phantom. A specific methodology was used to separate the IE and the BE. The influence of different motion parameters (period, amplitude, shape) and plan parameters (volume margin, dose per fraction) was also analyzed. RESULTS: The MC model was validated against measurement performed with motion with a mean 3D global gamma index pass rate of 97.5% (3%/3 mm). A significant correlation is found between the IE and the period and the antero-posterior amplitude of the motion but not between the IE and the CTV margin or the shape of motion. The results showed that the IE increases D2% and decreases the D98% of CTV with mean values of +6.9% and -3.3% respectively. CONCLUSIONS: We validated the feasibility to assess the IE using a MC model. We found that the most important parameter is the number of breathing cycles that must be greater than 20 for one arc to limit the IE.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
2.
J Appl Clin Med Phys ; 21(8): 208-215, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32573908

RESUMO

PURPOSE: To assess the accuracy of volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) when treating moving targets (such as lung or liver lesions), focusing on the impact of the interplay effect in the event of complex breathing motion and when a gating window is used. METHODS: A dedicated programmable motion platform was implemented. This platform can carry large quality assurance (QA) phantoms and achieve complex three-dimensional (3D) motion. Volumetric modulated arc therapy SBRT plans were delivered with TrueBeam linac to this moving setup and the measured dose was compared to the computed one. Several parameters were assessed such as breathing period, dose rate, dose prescription, shape of the breathing pattern, the use of a planning target volume (PTV) margin, and the use of a gating window. RESULTS: Loss of dose coverage (D95%) was acceptable in most situations. The doses received by 95% of the CTV, D95% ( C T V m ) ranged from 94 to 101% (mean 98%) and the doses received by 2% of the CTV D2% ( C T V m ) ranged from 94% to 110% of the prescribed dose. A visible interplay effect was observed when no margin was used or when the number of breathing cycles during the treatment delivery was lower than 20. CONCLUSIONS: In our clinical context, treating lung and liver lesions using VMAT SBRT is reasonable. The interplay effect was moderated and acceptable in all simulated situations.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...