Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(21): e202400116, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38318755

RESUMO

Linearly fused polycyclic piperidines represent common substructures in natural products and biologically active small molecules. We have devised a Pd-catalyzed annulation strategy to these compounds that converts readily available 2-tetralones and indanones into these scaffolds with the potential for control of both enantio- and diastereoselectivity. Importantly, these compounds can be chemoselectively functionalized, providing an efficient and robust methodology to these important nitrogen-containing molecules.

2.
Org Biomol Chem ; 22(8): 1602-1607, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314915

RESUMO

Kinetic resolution of N-Boc-spirocyclic 2-arylpiperidines with spiro substitution at C-4 was achieved with high enantiomeric ratios using the chiral base n-BuLi/sparteine. Cyclopropanation or metallaphotoredox catalysis were used to access the piperidines, which could be further functionalised without loss of enantiopurity, highlighting their use as potential 3D fragments for drug discovery.

3.
Chem Sci ; 14(41): 11417-11428, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886100

RESUMO

To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) trans-acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand 3IL state to the desired charge-separated 3CSS state. We observe two surprising effects of an increased strength of the acceptor in NDI vs. NAP: a ca. 70-fold slow-down of the 3CSS formation-(971 ps)-1vs. (14 ps)-1, and a longer lifetime of the 3CSS (5.9 vs. 1 ns); these are attributed to differences in the driving force ΔGet, and to distance dependence. The 100-fold increase in the rate of intersystem crossing-to sub-500 fs-by the stronger acceptor highlights the role of delocalisation across the heavy-atom containing bridge in this process. The close proximity of several excited states allows one to control the yield of 3CSS from ∼100% to 0% by solvent polarity. The new DBAs offer a versatile platform for investigating the role of bridge vibrations as a tool to control excited state dynamics.

4.
J Am Chem Soc ; 145(22): 12124-12135, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235775

RESUMO

Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.

5.
Chemistry ; 29(36): e202300815, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37067465

RESUMO

Highly enantiomerically enriched dihydrohydroquinolines were prepared in two steps from quinoline. Addition of aryllithiums to quinoline with tert-butoxycarbonyl (Boc) protection gave N-Boc-2-aryl-1,2-dihydroquinolines. These were treated with n-butyllithium and electrophilic trapping occurred exclusively at C-4 of the dihydroquinoline, a result supported by DFT studies. Variable temperature NMR spectroscopy gave kinetic data for the barrier to rotation of the carbonyl group (ΔG≠ ≈49 kJ mol-1 , 195 K). Lithiation using the diamine sparteine allowed kinetic resolutions with high enantioselectivities (enantiomer ratio up to 99 : 1). The enantioenriched 1,2-dihydroquinolines could be converted to 1,4-dihydroquinolines with retention of stereochemistry. Further functionalisation led to trisubstituted products. Reduction provided enantioenriched tetrahydroquinolines, whereas acid-promoted removal of Boc led to quinolines, and this was applied to a synthesis of the antimalarial compound M5717.

6.
Chem Sci ; 14(7): 1752-1761, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819865

RESUMO

We describe the mechanochemical regulation of a reaction that would otherwise be considered to be photochemical, via a simple process that yields nm spatial resolution. An atomic force microscope (AFM) probe is used to remove photocleavable nitrophenyl protecting groups from alkylsilane films at loads too small for mechanical wear, thus enabling nanoscale differentiation of chemical reactivity. Feature sizes of 20-50 nm are achieved repeatably and controllably at writing rates up to 1 mm s-1. Line widths vary monotonically with the load up to 2000 nN. To demonstrate the capacity for sophisticated surface functionalisation provided by this strategy, we show that functionalization of nanolines with nitrilo triacetic acid enables site-specific immobilization of histidine-tagged green fluorescent protein. Density functional theory (DFT) calculations reveal that the key energetic barrier in the photo-deprotection reaction of the nitrophenyl protecting group is excitation of a π-π* transition (3.1 eV) via an intramolecular charge-transfer mechanism. Under modest loading, compression of the adsorbate layer causes a decrease in the N-N separation, with the effect that this energy barrier can be reduced to as little as 1.2 eV. Thus, deprotection becomes possible via either absorption of visible photons or phononic excitation transfer, facilitating fast nanolithography with a very small feature size.

8.
J Phys Chem A ; 126(34): 5853-5863, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976118

RESUMO

New correlation consistent basis sets for the second-row atoms (Al-Ar) to be used with the neon-core correlation consistent effective core potentials (ccECPs) have been developed. The basis sets, denoted cc-pV(n+d)Z-ccECP (n = D, T, Q), include the "tight"-d functions that are known to be important for second-row elements. Sets augmented with additional diffuse functions are also reported. Effective core polarization potentials (CPPs) to account for the effect of core-valence correlation have been adjusted for the same elements, and two different forms of the CPP cutoff function have been analyzed. The accuracy of both the basis sets and the CPPs is assessed through benchmark calculations at the coupled-cluster level of theory for atomic and molecular properties. Agreement with all-electron results is much improved relative to the basis sets that originally accompanied the ccECPs; moreover, the combination of cc-pV(n+d)Z-ccECP and CPPs is found to be a computationally efficient and accurate alternative to including core electrons in the correlation treatment.

9.
J Org Chem ; 87(13): 8819-8823, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699313

RESUMO

The base n-BuLi with sparteine allows a kinetic resolution of N-Boc-2-aryl-4-methylenepiperidines. The 2,2-disubstituted products and recovered starting materials were isolated with high enantiomeric ratios. From VT-NMR spectroscopy and DFT studies, the rate of rotation of the N-Boc group is fast. Lithiation and trapping of the enantioenriched starting materials gave 2,2-disubstituted piperidines with retention of stereochemistry. Functionalization of the 4-methylene group led to a variety of 2,4-disubstituted piperidines without loss of enantiopurity that could be useful building blocks for drug discovery.


Assuntos
Esparteína , Cinética , Espectroscopia de Ressonância Magnética , Piperidinas/química , Esparteína/química , Estereoisomerismo
10.
J Am Chem Soc ; 143(48): 20442-20453, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808044

RESUMO

With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.


Assuntos
Complexos de Coordenação/química , DNA/análise , Substâncias Luminescentes/química , Animais , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Humanos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/toxicidade , Microscopia Confocal , Osmio/química , Osmio/toxicidade
11.
Chemistry ; 27(45): 11670-11675, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34110662

RESUMO

Kinetic resolution of 2-arylindolines (2,3-dihydroindoles) was achieved by treatment of their N-tert-butoxycarbonyl (Boc) derivatives with n-butyllithium and sparteine in toluene at -78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2-disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠ ≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N-Boc-2-arylindolines were converted to 2,2-disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2-disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation-trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2-aryl and 2,2-disubstituted indolines.


Assuntos
Esparteína , Indóis , Cinética , Estereoisomerismo
12.
Chemistry ; 27(8): 2662-2669, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32893891

RESUMO

Breslow intermediates (BIs) are the crucial nucleophilic amino enol intermediates formed from electrophilic aldehydes in the course of N-heterocyclic carbene (NHC)-catalyzed umpolung reactions. Both in organocatalytic and enzymatic umpolung, the question whether the Breslow intermediate exists as the nucleophilic enol or in the form of its electrophilic keto tautomer is of utmost importance for its reactivity and function. Herein, the preparation of charge-tagged Breslow intermediates/keto tautomers derived from three different types of NHCs (imidazolidin-2-ylidenes, 1,2,4-triazolin-5-ylidenes, thiazolin-2-ylidenes) and aldehydes is reported. An ammonium charge tag is introduced through the aldehyde unit or the NHC. ESI-MS IR ion spectroscopy allowed the unambiguous conclusion that in the gas phase, the imidazolidin-2-ylidene-derived BI indeed exists as a diamino enol, while both 1,2,4-triazolin-5-ylidenes and thiazolin-2-ylidenes give the keto tautomer. This result coincides with the tautomeric states observed for the BIs in solution (NMR) and in the crystalline state (XRD), and is in line with our earlier calculations on the energetics of BI keto-enol equilibria.

13.
Dalton Trans ; 49(14): 4230-4243, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32104876

RESUMO

Novel molecular Re and Mn tricarbonyl complexes bearing a bipyridyl ligand functionalised with sterically hindering substituents in the 6,6'-position, [M(HPEAB)(CO)3(X)] (M/X = Re/Cl, Mn/Br; HPEAB = 6,6'-{N-(4-hexylphenyl)-N(ethyl)-amido}-2,2'-bipyridine) have been synthesised, fully characterised including by single crystal X-ray crystallography, and their propensity to act as catalysts for the electrochemical and photochemical reduction of CO2 has been established. Controlled potential electrolysis showed that the catalysts are effective for electrochemical CO2-reduction, yielding CO as the product (in MeCN for the Re-complex, in 95 : 5 (v/v) MeCN : H2O mixture for the Mn-complex). The recyclability of the catalysts was demonstrated through replenishment of CO2 within solution. The novel catalysts had similar reduction potentials to previously reported complexes of similar structure, and results of the foot-of-the-wave analysis showed comparable maximum turnover rates, too. The tentative mechanisms for activation of the pre-catalysts were proposed on the basis of IR-spectroelectrochemical data aided by DFT calculations. It is shown that the typical dimerisation of the Mn-catalyst was prevented by incorporation of sterically hindering groups, whilst the Re-catalyst undergoes the usual mechanism following chloride ion loss. No photochemical CO2 reduction was observed for the rhenium complex in the presence of a sacrificial donor (triethylamine), which was attributed to the short triplet excited state lifetime (3.6 ns), insufficient for diffusion-controlled electron transfer. Importantly, [Mn(HPEAB)(CO)3Br] can act as a CO2 reduction catalyst when photosensitised by a zinc porphyrin under red light irradiation (λ > 600 nm) in MeCN : H2O (95 : 5); there has been only one reported example of photoactivating Mn-catalysts with porphyrins in this manner. Thus, this work demonstrates the wide utility of sterically protected Re- and Mn-diimine carbonyl catalysts, where the rate and yield of CO-production can be adjusted based on the metal centre and catalytic conditions, with the advantage of suppressing unwanted side-reactions through steric protection of the vacant coordination site.

15.
J Am Chem Soc ; 142(2): 1101-1111, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846306

RESUMO

The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.


Assuntos
Complexos de Coordenação/química , Medicina de Precisão , Rênio/química , Compostos de Rutênio/química , Linhagem Celular , Humanos , Ligantes , Estrutura Molecular , Espectrofotometria Ultravioleta
16.
Phys Chem Chem Phys ; 21(30): 16591-16600, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31317140

RESUMO

A charge-tagged phenyl pyruvic acid derivative was investigated by tandem-MS, infrared (IR) ion spectroscopy and theory. The tailor-made precursor ions efficiently lose CO2 in collision induced dissociation (CID) experiments, offering access to study the secondary decay reactions of the product ions. IR ion spectroscopy provides evidence for the formation of an enol acid precursor ion structure in the gas phase and indicates the presence of enol products formed after CO2 loss. Extensive DFT computations however, suggest intermediate generation of hydroxycarbene products, which in turn rearrange in a secondary process to the enol ions detected by IR ion spectroscopy. Quantum mechanical tunneling of the hydroxycarbene can be excluded since no evidence for aldehyde product ion formation could be found. This finding is in contrast to the behavior of methylhydroxycarbene, which cleanly penetrates the energy barrier to form exclusively acetaldehyde at cryogenic temperatures in an argon matrix via quantum mechanical hydrogen tunneling. The results presented here are attributed to the highly excited energy levels of the product ions formed by CID in combination with different barrier heights of the competing reaction channels, which allow exclusive access over one energy barrier leading to the formation of the enol tautomer ions observed.

17.
Chem Sci ; 10(12): 3502-3513, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30996941

RESUMO

With the aim of developing a sensitizer for photodynamic therapy, a previously reported luminescent dinuclear complex that functions as a DNA probe in live cells was modified to produce a new iso-structural derivative containing RuII(TAP)2 fragments (TAP = 1,4,5,8-tetraazaphenanthrene). The structure of the new complex has been confirmed by a variety of techniques including single crystal X-ray analysis. Unlike its parent, the new complex displays Ru → L-based 3MLCT emission in both MeCN and water. Results from electrochemical studies and emission quenching experiments involving guanosine monophosphate are consistent with an excited state located on a TAP moiety. This hypothesis is further supported by detailed DFT calculations, which take into account solvent effects on excited state dynamics. Cell-free steady-state and time-resolved optical studies on the interaction of the new complex with duplex and quadruplex DNA show that the complex binds with high affinity to both structures and indicate that its photoexcited state is also quenched by DNA, a process that is accompanied by the generation of the guanine radical cation sites as photo-oxidization products. Like the parent complex, this new compound is taken up by live cells where it primarily localizes within the nucleus and displays low cytotoxicity in the absence of light. However, in complete contrast to [{RuII(phen)2}2(tpphz)]4+, the new complex is therapeutically activated by light to become highly phototoxic toward malignant human melanoma cell lines showing that it is a promising lead for the treatment of this recalcitrant cancer.

18.
Inorg Chem ; 57(21): 13201-13212, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351084

RESUMO

The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum.


Assuntos
Complexos de Coordenação/química , Substâncias Luminescentes/química , Imagem Óptica , Osmio/química , Piridinas/química , Triazóis/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Células HeLa , Humanos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/farmacologia , Medições Luminescentes , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica , Células Tumorais Cultivadas
19.
Chemistry ; 24(68): 17986-17996, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30222223

RESUMO

The modular structure of metal-organic framework nanosheets (MONs) provides a convenient route to creating two-dimensional materials with readily tuneable surface properties. Here, the liquid exfoliation of two closely related layered metal-organic frameworks functionalised with either methoxy-propyl (1) or pentyl (2) pendent groups intended to bestow either hydrophilic or hydrophobic character to the resulting nanosheets is reported. Exfoliation of the two materials in a range of different solvents highlighted significant differences in their dispersion properties, as well as their molecular and nanoscopic structures. Exchange or loss of solvent was found to occur at the labile axial position of the paddle-wheel based MONs and DFT calculations indicated that intramolecular coordination by the oxygen of the methoxy-propyl pendant groups may take place. The nanoscopic dimensions of the MONs were further tuned by varying the exfoliation conditions and through "liquid cascade centrifugation". Aqueous suspensions of the nanosheets were used as sensors to detect aromatic heterocycles with clear differences in binding behaviour observed and quantified.

20.
Dalton Trans ; 47(35): 12300-12307, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30113065

RESUMO

The synthesis of two new tetracationic mononuclear RuII complexes containing the tetrapyridyl [3,2-a:2',3'-c:3'',2''-h:2''',3'''-j] phenazine ligand in which the uncoordinated site has been converted into a dicationic ethylene-bipyridyldiylium unit is reported. The structure of the complexes is fully assigned through detailed NMR studies and, in one case, through an X-ray crystallography study. Voltammetry, optical spectroscopy and computational studies confirm that the bipyridyldiylium moiety has a low-lying reduction that quenches the 3MLCT-based emission usually observed in such systems. The new complexes interact with DNA in a quite different manner to their dicationic analogues: they both bind to duplex DNA with micromolar affinity through groove binding. These observations are rationalized through a consideration of their structural and electronic properties.


Assuntos
Complexos de Coordenação/química , DNA/química , Fenazinas/química , Rutênio/química , Sítios de Ligação , Cátions/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Técnicas Eletroquímicas , Modelos Moleculares , Conformação Molecular , Processos Fotoquímicos , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...