Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Andrology ; 9(5): 1603-1616, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960147

RESUMO

BACKGROUND: Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but no studies have involved cytotoxic treatment before puberty and transplantation after puberty, which would be the most likely clinical scenario. OBJECTIVES: To evaluate donor-derived functional sperm production after SSC transplantation to adult monkeys that had received testicular irradiation during the prepubertal period. MATERIALS AND METHODS: We obtained prepubertal testis tissue by unilaterally castrating six prepubertal monkeys and 2 weeks later irradiated the remaining testes with 6.9 Gy. However, because spermatogenic recovery was observed, we irradiated them again 14 months later with 7 Gy. Three of the monkeys were treated with GnRH-antagonist (GnRH-ant) for 8 weeks. The cryopreserved testis cells from the castrated testes were then allogeneically transplanted into the intact testes of all monkeys. Tissues were harvested 10 months later for analyses. RESULTS: In three of the six monkeys, 61%, 38%, and 11% of the epididymal sperm DNA were of the donor genotype. The ability to recover donor-derived sperm production was not enhanced by the GnRH-ant pretreatment. However, the extent of filling seminiferous tubules during the transplantation procedure was correlated with the eventual production of donor spermatozoa. The donor epididymal spermatozoa from the recipient with 61% donor contribution were capable of fertilizing rhesus eggs and forming embryos. Although the transplantation was done into the rete testis, two GnRH-ant-treated monkeys, which did not produce donor-derived epididymal spermatozoa, displayed irregular tubular cords in the interstitium containing testicular spermatozoa derived from the transplanted donor cells. DISCUSSION AND CONCLUSION: The results further support that sperm production can be restored in non-human primates from tissues cryopreserved prior to prepubertal and post-pubertal gonadotoxic treatment by transplantation of these testicular cells after puberty into seminiferous tubules.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Puberdade/efeitos da radiação , Lesões Experimentais por Radiação/terapia , Espermatogênese/efeitos da radiação , Transplante de Células-Tronco , Animais , Criopreservação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/administração & dosagem , Macaca mulatta , Masculino , Lesões Experimentais por Radiação/fisiopatologia , Túbulos Seminíferos , Espermatozoides/efeitos da radiação , Testículo/fisiopatologia , Testículo/efeitos da radiação
2.
PLoS One ; 15(12): e0242218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370316

RESUMO

Improvements in survival rates with gonad-sparing protocols for childhood and adolescence cancer have increased the optimism of survivors to become parents after treatment. Findings in rodents indicate that chromosomal aberrations can be induced in male germ cells by genotoxic exposures and transmitted to offspring and future generations with effects on development, fertility and health. Thus, there is a need for effective technologies to identify human sperm carrying chromosomal aberrations to assess the germ-line risks, especially for cancer survivors who have received genotoxic therapies. The time-dependent changes in the burden of sperm carrying structural chromosomal aberrations were assessed for the first time in a cancer setting, using the AM8 sperm FISH protocol which simultaneously detects abnormalities in chromosomal structure and number in sperm. Nine Hodgkin lymphoma (HL) patients provided 20 semen samples before, during, and after NOVP therapy (Novantrone, Oncovin, Velban and Prednisone) and radiation therapy that produced scattered gonadal doses from <0.05 to 0.6 Gy. Late meiosis was found to be the most sensitive to NOVP treatment for the production of sperm with chromosomal abnormalities, both in structure and number. Earlier stages of spermatogenesis were less sensitive and there was no evidence that therapy-exposed stem cells resulted in increased frequencies of sperm with abnormalities in chromosomal structure or number. This indicates that NOVP therapy may increase the risks for paternal transmission of chromosomal structural aberrations for sperm produced 32 to 45 days after a treatment with these drugs and implies that there are no excess risks for pregnancies conceived more than 6 months after this therapy. This clinical evaluation of the AM8 sperm FISH protocol indicates that it is a promising tool for assessing an individual's burden of sperm carrying chromosomal structural aberrations as well as aneuploidies after cancer therapy, with broad applications in other clinical and environmental situations that may pose aneugenic or clastogenic risks to human spermatogenesis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Aberrações Cromossômicas/efeitos dos fármacos , Doença de Hodgkin/terapia , Meiose/efeitos dos fármacos , Análise do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Adulto , Células-Tronco Germinativas Adultas/efeitos dos fármacos , Células-Tronco Germinativas Adultas/efeitos da radiação , Sobreviventes de Câncer , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Aberrações Cromossômicas/efeitos da radiação , Estudos de Coortes , Preservação da Fertilidade , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Meiose/efeitos da radiação , Mitoxantrona/efeitos adversos , Mutagênese/efeitos dos fármacos , Mutagênese/efeitos da radiação , Tratamentos com Preservação do Órgão/efeitos adversos , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Prednisona/efeitos adversos , Dosagem Radioterapêutica , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatozoides/fisiologia , Espermatozoides/efeitos da radiação , Testículo/efeitos dos fármacos , Testículo/efeitos da radiação , Fatores de Tempo , Vimblastina/efeitos adversos , Vincristina/efeitos adversos
3.
Andrology ; 8(5): 1428-1441, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32351003

RESUMO

BACKGROUND: In male pre-pubertal cancer patients, radiation and chemotherapy impact future fertility by eradication of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but only a small percentage of spermatozoa produced were of donor origin. Transient hormone suppression with a GnRH antagonist (GnRH-ant) enhanced spermatogenic recovery from transplanted SSCs. OBJECTIVES: To evaluate donor-derived and endogenous spermatogenic recovery after SSC transplantation into irradiated monkeys and to test whether hormone suppression around the time of transplantation facilitates spermatogenic recovery. MATERIALS AND METHODS: Testes of 15 adult rhesus monkeys were irradiated with 7 Gy and 4 months later transplanted, to one of the testes, with cryopreserved testicular cells containing SSCs from unrelated monkeys. Monkeys were either treated with GnRH-ant for 8 weeks before transplantation, GnRH-ant from 4 weeks before to 4 weeks after transplantation, or with no GnRH-ant. Tissues were harvested 10 months after transplantation. RESULTS: Two of the 15 monkeys, a control and a pre-transplantation GnRH-ant-treated, showed substantially higher levels of testicular spermatogenesis and epididymal sperm output in the transplanted side as compared to the untransplanted. Over 84% of epididymal spermatozoa on the transplanted side had the donor genotype and were capable of fertilizing eggs after intracytoplasmic sperm injection forming morulae of the donor paternal origin. Low levels of donor spermatozoa (~1%) were also identified in the epididymis of three additional monkeys. Transplantation also appeared to enhance endogenous spermatogenesis. DISCUSSION AND CONCLUSION: We confirmed that SSC transplantation can be used for restoration of fertility in male cancer survivors exposed to irradiation as a therapeutic agent. The success rate of this procedure, however, is low. The success of filling the tubules with the cell suspension, but not the GnRH-ant treatment, was related to the level of colonization by transplanted cells.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Espermatogênese/fisiologia , Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Testículo/efeitos da radiação , Animais , Macaca mulatta , Masculino , Lesões Experimentais por Radiação
4.
Andrology ; 8(3): 545-558, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31821745

RESUMO

BACKGROUND: Men who have just started cytotoxic therapy for cancer are uncertain and concerned about whether spermatozoa collected or pregnancies occurring during therapy might be transmitting genetic damage to offspring. There are no comprehensive guidelines on the risks of different doses of the various cytotoxic, and usually genotoxic, antineoplastic agents. OBJECTIVES: To develop a schema showing the risks of mutagenic damage when spermatozoa, exposed to various genotoxic agents during spermatogenesis, are collected or used to produce a pregnancy. MATERIALS AND METHODS: A comprehensive literature review was performed updating the data on genetic and epigenetic effects of genotoxic agents on animal and human spermatozoa exposed during spermatogenic development. RESULTS: Relevant data on human spermatozoa and offspring are extremely limited, but there are extensive genetic studies in experimental animals that define sensitivities for specific drugs and times. The animal data were extrapolated to humans based on the stage when the cells were exposed and the relative kinetics of spermatogenesis and were consistent with the limited human data. In humans, alkylating agents and radiation should already induce a high risk of mutations in spermatozoa produced within 1 or 2 weeks after initiation of therapy. Topoisomerase II inhibitors and possibly microtubule inhibitors produce the greatest risk at weeks 5-7 of therapy. Nucleoside analogs, antimetabolites, and bleomycin exert their mutagenic effects on spermatozoa collected at 7-10 weeks of therapy. DISCUSSION AND CONCLUSIONS: A schema showing the time from initiation of therapy at which specific antineoplastic agents can cause significant levels of genetic damage in conceptuses and live offspring was developed. The estimates and methods for computing the level of such risk from an individual patient's treatment regimen will enable patients and counselors to make informed decisions on the use of spermatozoa or continuation of a pregnancy.


Assuntos
Antineoplásicos/efeitos adversos , Radioterapia/efeitos adversos , Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos da radiação , Animais , Dano ao DNA/efeitos da radiação , Tratamento Farmacológico , Humanos , Masculino
5.
Hum Reprod ; 34(8): 1404-1415, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348830

RESUMO

STUDY QUESTION: What effect does cancer treatment have on levels of spontaneous selfish fibroblast growth factor receptor 2 (FGFR2) point mutations in human sperm? SUMMARY ANSWER: Chemotherapy and radiotherapy do not increase levels of spontaneous FGFR2 mutations in sperm but, unexpectedly, highly-sterilizing treatments dramatically reduce the levels of the disease-associated c.755C > G (Apert syndrome) mutation in sperm. WHAT IS KNOWN ALREADY: Cancer treatments lead to short-term increases in gross DNA damage (chromosomal abnormalities and DNA fragmentation) but the long-term effects, particularly at the single nucleotide resolution level, are poorly understood. We have exploited an ultra-sensitive assay to directly quantify point mutation levels at the FGFR2 locus. STUDY DESIGN, SIZE, DURATION: 'Selfish' mutations are disease-associated mutations that occur spontaneously in the sperm of most men and their levels typically increase with age. Levels of mutations at c.752-755 of FGFR2 (including c.755C > G and c.755C > T associated with Apert and Crouzon syndromes, respectively) in semen post-cancer treatment from 18 men were compared to levels in pre-treatment samples from the same individuals (n = 4) or levels in previously screened population controls (n = 99). PARTICIPANTS/MATERIALS, SETTING, METHODS: Cancer patients were stratified into four different groups based on the treatments they received and the length of time for spermatogenesis recovery. DNA extracted from semen samples was analysed using a previously established highly sensitive assay to identify mutations at positions c.752-755 of FGFR2. Five to ten micrograms of semen genomic DNA was spiked with internal controls for quantification purposes, digested with MboI restriction enzyme and gel extracted. Following PCR amplification, further MboI digestion and a nested PCR with barcoding primers, samples were sequenced on Illumina MiSeq. Mutation levels were determined relative to the spiked internal control; in individuals heterozygous for a nearby common single nucleotide polymorphism (SNP), mutations were phased to their respective alleles. MAIN RESULTS AND THE ROLE OF CHANCE: Patients treated with moderately-sterilizing alkylating regimens and who recovered spermatogenesis within <3 years after therapy (Group 3, n = 4) or non - alkylating chemotherapy and/or low gonadal radiation doses (Group 1, n = 4) had mutation levels similar to untreated controls. However, patients who had highly-sterilizing alkylating treatments (i.e. >5 years to spermatogenesis recovery) (Group 2, n = 7) or pelvic radiotherapy (Group 4, n = 3) exhibited c.755C > G mutation levels at or below background. Two patients (A and B) treated with highly-sterilizing alkylating agents demonstrated a clear reduction from pre-treatment levels; however pre-treatment samples were not available for the other patients with low mutation levels. Therefore, although based on their age we would expect detectable levels of mutations, we cannot exclude the possibility that these patients also had low mutation levels pre-treatment. In three patients with low c.755C > G levels at the first timepoint post-treatment, we observed increasing mutation levels over time. For two such patients we could phase the mutation to a nearby polymorphism (SNP) and determine that the mutation counts likely originated from a single or a small number of mutational events. LIMITATIONS, REASONS FOR CAUTION: This study was limited to 18 patients with different treatment regimens; for nine of the 18 patients, samples from only one timepoint were available. Only 12 different de novo substitutions at the FGFR2 c.752-755 locus were assessed, two of which are known to be disease associated. WIDER IMPLICATIONS OF THE FINDINGS: Our data add to the body of evidence from epidemiological studies and experimental data in humans suggesting that male germline stem cells are resilient to the accumulation of spontaneous mutations. Collectively, these data should provide physicians and health-care professionals with reassuring experimental-based evidence for counselling of male cancer patients contemplating their reproductive options several years after treatment. STUDY FUNDING/COMPETING INTEREST(S): This work was primarily supported by grants from the Wellcome (grant 091182 to AG and AOMW; grant 102 731 to AOMW), the University of Oxford Medical Sciences Division Internal Fund (grant 0005128 to GJM and AG), the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme (to AG) and the US National Institutes of Health (to MLM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. None of the authors has any conflicts of interest to declare. TRIAL REGISTRATION NUMBER: NA.


Assuntos
Antineoplásicos/administração & dosagem , Sobreviventes de Câncer , Neoplasias/terapia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Espermatozoides/efeitos da radiação , Adulto , Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Masculino , Mutação/efeitos dos fármacos , Mutação/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioterapia , Análise do Sêmen , Contagem de Espermatozoides , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
6.
FASEB J ; 33(7): 8423-8435, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991836

RESUMO

Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) regulates the concentration of all-trans retinoic acid (RA) and plays a key role in germ cell differentiation by controlling local distribution of RA. The mechanisms regulating Cyp26b1 expression in postnatal Sertoli cells, the main components of the stem cell niche, are so far unknown. During gonad development, expression of Cyp26b1 is maintained by Steroidogenic Factor 1 (SF-1) and Sex-Determining Region Y Box-9 (SOX9), which ensure that RA is degraded and germ cell differentiation is blocked. Here, we show that the NOTCH target Hairy/Enhancer-of-Split Related with YRPW Motif 1 (HEY1), a transcriptional repressor, regulates germ cell differentiation via direct binding to the Cyp26b1 promoter and thus inhibits its expression in Sertoli cells. Further, using in vivo germ cell ablation, we demonstrate that undifferentiated type A spermatogonia are the cells that activate NOTCH signaling in Sertoli cells through their expression of the NOTCH ligand JAGGED-1 (JAG1) at stage VIII of the seminiferous epithelium cycle, therefore mediating germ cell differentiation by a ligand concentration-dependent process. These data therefore provide more insights into the mechanisms of germ cell differentiation after birth and potentially explain the spatiotemporal RA pulses driving the transition between undifferentiated to differentiating spermatogonia.-Parekh, P. A., Garcia, T. X., Waheeb, R., Jain, V., Gandhi, P., Meistrich, M. L., Shetty, G., Hofmann, M.-C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/metabolismo , Ácido Retinoico 4 Hidroxilase/biossíntese , Transdução de Sinais , Espermatogônias/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Receptores Notch/genética , Ácido Retinoico 4 Hidroxilase/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Espermatogônias/citologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo
7.
Science ; 363(6433): 1314-1319, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30898927

RESUMO

Testicular tissue cryopreservation is an experimental method to preserve the fertility of prepubertal patients before they initiate gonadotoxic therapies for cancer or other conditions. Here we provide the proof of principle that cryopreserved prepubertal testicular tissues can be autologously grafted under the back skin or scrotal skin of castrated pubertal rhesus macaques and matured to produce functional sperm. During the 8- to 12-month observation period, grafts grew and produced testosterone. Complete spermatogenesis was confirmed in all grafts at the time of recovery. Graft-derived sperm were competent to fertilize rhesus oocytes, leading to preimplantation embryo development, pregnancy, and the birth of a healthy female baby. Pending the demonstration that similar results are obtained in noncastrated recipients, testicular tissue grafting may be applied in the clinic.


Assuntos
Preservação da Fertilidade/métodos , Fertilização , Espermatogênese , Espermatozoides/crescimento & desenvolvimento , Testículo/fisiologia , Testículo/transplante , Animais , Autoenxertos , Criopreservação , Macaca mulatta , Masculino , Reprodução , Maturidade Sexual , Transplante Autólogo
8.
Nat Commun ; 9(1): 5339, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559363

RESUMO

A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Espermatócitos/citologia , Espermatogênese/fisiologia , Espermatogônias/citologia , Testículo/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Transplante Heterólogo , Transplante Homólogo
9.
Hum Reprod ; 33(12): 2249-2255, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358843

RESUMO

STUDY QUESTION: Can transplanted primate testicular cells form seminiferous tubules de novo, supporting complete spermatogenesis? SUMMARY ANSWER: Cryopreserved testicular cells from a prepubertal monkey can reorganize in an adult monkey recipient testis forming de novo seminiferous tubular cords supporting complete spermatogenesis. WHAT IS KNOWN ALREADY: De novo morphogenesis of testicular tissue using aggregated cells from non-primate species grafted either subcutaneously or in the testis can support spermatogenesis. STUDY DESIGN, SIZE, DURATION: Two postpubertal rhesus monkeys (Macaca mulatta) were given testicular irradiation. One monkey was given GnRH-antagonist treatment from 8 to 16 weeks after irradiation, while the other received sham injections. At 16 weeks, cryopreserved testicular cells from two different prepubertal monkeys [43 × 106 viable (Trypan-blue excluding) cells in 260 µl, and 80 × 106 viable cells in 400 µl] were transplanted via ultrasound-guided injections to one of the rete testis in each recipient, and immune suppression was given. The contralateral testis was sham transplanted. Testes were analyzed 9 months after transplantation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Spermatogenic recovery was assessed by testicular volume, weight, histology and immunofluorescence. Microsatellite genotyping of regions of testicular sections obtained by LCM determined whether the cells were derived from the host or transplanted cells. MAIN RESULTS AND THE ROLE OF CHANCE: Transplanted testis of the GnRH-antagonist-treated recipient, but not the sham-treated recipient, contained numerous irregularly shaped seminiferous tubular cords, 89% of which had differentiating germ cells, including sperm in a few of them. The percentages of donor genotype in different regions of this testis were as follows: normal tubule, 0%; inflammatory, 0%; abnormal tubule region, 67%; whole interior of abnormal tubules, >99%; adluminal region of the abnormal tubules, 92%. Thus, these abnormal tubules, including the enclosed germ cells, were derived de novo from the donor testicular cells. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The de novo tubules were observed in only one out of the two monkeys transplanted with prepubertal donor testicular cells. WIDER IMPLICATIONS OF THE FINDINGS: These findings may represent a promising strategy for restoration of fertility in male childhood cancer survivors. The approach could be particularly useful in those exposed to therapeutic agents that are detrimental to the normal development of the tubule somatic cells affecting the ability of the endogenous tubules to support spermatogenesis, even from transplanted spermatogonial stem cells. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by research grants P01 HD075795 from Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD/NIH) to K.E.O and Cancer Center Support Grant P30 CA016672 from NCI/NIH to The University of Texas MD Anderson Cancer Center. The authors declare that they have no competing interests.


Assuntos
Túbulos Seminíferos/fisiologia , Espermatogênese/fisiologia , Testículo/citologia , Testículo/transplante , Animais , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Macaca mulatta , Masculino
10.
Cell Rep ; 12(7): 1069-70, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26287751

RESUMO

In this issue of Cell Reports, DeFalco et al. (2015) characterize a novel macrophage population associated with the peritubular lamina of mouse testes. These macrophages may create a niche not for the self-renewal of stem cells but rather the induction of their differentiation.


Assuntos
Macrófagos/metabolismo , Espermatogênese , Espermatogônias/citologia , Nicho de Células-Tronco , Testículo/citologia , Animais , Masculino
11.
Artigo em Inglês | MEDLINE | ID: mdl-25953399

RESUMO

This workshop reviewed the current science to inform and recommend the best evidence-based approaches on the use of germ cell genotoxicity tests. The workshop questions and key outcomes were as follows. (1) Do genotoxicity and mutagenicity assays in somatic cells predict germ cell effects? Limited data suggest that somatic cell tests detect most germ cell mutagens, but there are strong concerns that dictate caution in drawing conclusions. (2) Should germ cell tests be done, and when? If there is evidence that a chemical or its metabolite(s) will not reach target germ cells or gonadal tissue, it is not necessary to conduct germ cell tests, notwithstanding somatic outcomes. However, it was recommended that negative somatic cell mutagens with clear evidence for gonadal exposure and evidence of toxicity in germ cells could be considered for germ cell mutagenicity testing. For somatic mutagens that are known to reach the gonadal compartments and expose germ cells, the chemical could be assumed to be a germ cell mutagen without further testing. Nevertheless, germ cell mutagenicity testing would be needed for quantitative risk assessment. (3) What new assays should be implemented and how? There is an immediate need for research on the application of whole genome sequencing in heritable mutation analysis in humans and animals, and integration of germ cell assays with somatic cell genotoxicity tests. Focus should be on environmental exposures that can cause de novo mutations, particularly newly recognized types of genomic changes. Mutational events, which may occur by exposure of germ cells during embryonic development, should also be investigated. Finally, where there are indications of germ cell toxicity in repeat dose or reproductive toxicology tests, consideration should be given to leveraging those studies to inform of possible germ cell genotoxicity.


Assuntos
Células Germinativas , Mutação em Linhagem Germinativa , Mutagênicos/toxicidade , Animais , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Educação , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Células Germinativas/metabolismo , Células Germinativas/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Medição de Risco
12.
Nat Commun ; 5: 3812, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24818823

RESUMO

One of the most remarkable chromatin remodelling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodelling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orchestrates a cascade of molecular events required for histone removal and replacement, including histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction and DNA damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2) and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-to-protamine replacement and depict the cascade of molecular events underlying this process of extensive chromatin remodelling.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , DNA Helicases/genética , Infertilidade Masculina/genética , Espermatogênese/genética , Espermatozoides/metabolismo , Acetilação , Animais , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Histonas/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Protaminas/metabolismo , Testículo/metabolismo
13.
Microsc Microanal ; 20(4): 1304-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24834474

RESUMO

High quality fixation often inactivates epitopes and gentler fixation can fail to preserve biological structure at the required resolution. For studies of male reproduction, immunofluorescence techniques using paraformaldehyde fixation associated with paraffin as an embedding medium gives good epitope preservation, although the cell becomes morphologically compromised. On the other hand, glutaraldehyde associated with a plastic resin has been used with success to recognize and distinguish each spermatogonial cell subtype, but the antigenic sites become inaccessible to antibodies. Here we describe a new method that provides excellent morphological details of testicular cells while preserving the binding capacity of epitopes. Using a combination of glutaraldehyde and paraformaldehyde as a fixative and LR White resin for embedding, we show that it is possible to clearly recognize spermatogonial subtypes (Aund, A-A4, In and B spermatogonia) on 1-µm thick-sections and to label epitopes such as bromodeoxyuridine, a marker used for cellular cycle studies in the testis. The information gained from this procedure can be critical for understanding spermatogonial process of self-renewal and differentiation.


Assuntos
Espermatogônias/citologia , Coloração e Rotulagem/métodos , Testículo/citologia , Inclusão do Tecido/métodos , Fixação de Tecidos/métodos , Animais , Masculino , Camundongos Endogâmicos C57BL
14.
PLoS One ; 9(4): e93311, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691397

RESUMO

Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼ 70% of control and induced atrophic seminiferous tubules in ∼ 30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Ciclofosfamida/efeitos adversos , Exposição Materna , Folículo Ovariano/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Espermatogênese/efeitos dos fármacos , Neoplasias Testiculares/etiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Folículo Ovariano/efeitos da radiação , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Ovário/efeitos da radiação , Gravidez , Contagem de Espermatozoides , Espermatogênese/efeitos da radiação , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Testículo/efeitos da radiação
15.
Fertil Steril ; 101(1): 3-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24314923

RESUMO

Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or prereproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg, or embryo banking, followed by IVF and/or ET. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell-based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field.


Assuntos
Células-Tronco Adultas/fisiologia , Células Germinativas/fisiologia , Regeneração/fisiologia , Espermatogênese/fisiologia , Células-Tronco Adultas/transplante , Animais , Feminino , Células Germinativas/transplante , Humanos , Masculino , Técnicas de Reprodução Assistida/tendências , Espermatozoides/fisiologia , Espermatozoides/transplante
16.
Fertil Steril ; 100(5): 1180-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012199

RESUMO

Treatment of cancer with chemo- or radiotherapy causes reduction of sperm counts often to azoospermic levels that may persist for several years or be permanent. The time course of declines in sperm count can be predicted by the sensitivity of germ cells, with differentiating spermatogonia being most sensitive, and the known kinetics of recovery. Recovery from oligo- or azoospermia is more variable and depends on whether there is killing of stem cells and alteration of the somatic environment that normally supports differentiation of stem cells. Of the cytotoxic therapeutic agents, radiation and most alkylating drugs are the most potent at producing long-term azoospermia. Most of the newer biologic targeted therapies, except those used to target radioisotopes or toxins to cells, seem to have only modest effects, mostly on the endocrine aspects of the male reproductive system; however, their effects when used in combination with cytotoxic agents have not been well studied.


Assuntos
Antineoplásicos/efeitos adversos , Azoospermia/etiologia , Neoplasias/terapia , Oligospermia/etiologia , Lesões por Radiação/etiologia , Espermatogênese , Espermatozoides , Azoospermia/induzido quimicamente , Azoospermia/fisiopatologia , Azoospermia/prevenção & controle , Humanos , Masculino , Terapia de Alvo Molecular , Oligospermia/induzido quimicamente , Oligospermia/fisiopatologia , Oligospermia/prevenção & controle , Lesões por Radiação/fisiopatologia , Radioterapia/efeitos adversos , Recuperação de Função Fisiológica , Medição de Risco , Fatores de Risco , Contagem de Espermatozoides , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Espermatozoides/efeitos da radiação , Fatores de Tempo
17.
Reproduction ; 146(4): 363-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23884860

RESUMO

Ionizing radiation has been shown to arrest spermatogenesis despite the presence of surviving stem spermatogonia, by blocking their differentiation. This block is a result of damage to the somatic environment and is reversed when gonadotropins and testosterone are suppressed, but the mechanisms are still unknown. We examined spermatogonial differentiation and Sertoli cell factors that regulate spermatogonia after irradiation, during hormone suppression, and after hormone suppression combined with Leydig cell elimination with ethane dimethane sulfonate. These results showed that the numbers and cytoplasmic structure of Sertoli cells are unaffected by irradiation, only a few type A undifferentiated (Aund) spermatogonia and even fewer type A1 spermatogonia remained, and immunohistochemical analysis showed that Sertoli cells still produced KIT ligand (KITLG) and glial cell line-derived neurotrophic factor (GDNF). Some of these cells expressed KIT receptor, demonstrating that the failure of differentiation was not a result of the absence of the KIT system. Hormone suppression resulted in an increase in Aund spermatogonia within 3 days, a gradual increase in KIT-positive spermatogonia, and differentiation mainly to A3 spermatogonia after 2 weeks. KITL (KITLG) protein expression did not change after hormone suppression, indicating that it is not a factor in the stimulation. However, GDNF increased steadily after hormone suppression, which was unexpected since GDNF is supposed to promote stem spermatogonial self-renewal and not differentiation. We conclude that the primary cause of the block in spermatogonial development is not due to Sertoli cell factors such (KITL\GDNF) or the KIT receptor. As elimination of Leydig cells in addition to hormone suppression resulted in differentiation to the A3 stage within 1 week, Leydig cell factors were not necessary for spermatogonial differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Intersticiais do Testículo/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Fator de Células-Tronco/metabolismo , Testosterona/farmacologia , Androgênios/farmacologia , Animais , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Técnicas Imunoenzimáticas , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Ratos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/efeitos da radiação , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatogônias/efeitos dos fármacos , Espermatogônias/efeitos da radiação
18.
Methods Mol Biol ; 927: 299-307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22992924

RESUMO

Male germ cells in all mammals are arranged within the seminiferous epithelium of the testicular tubules in a set of well-defined cell associations called stages. The cellular associations found in these stages and characteristics of the cells used to identify the stages have been well described. Here we present a binary decision key roadmap for identifying stages and present several examples of how staging tubules can be used to better assess the developmental profile of gene expression during spermatogenesis and defects in spermatogenesis arising in pathological conditions resulting from genetic mutations in mice. In particular, when one or more cells of a cellular association cannot be clearly identified or are missing, the cell types that should be present can be precisely identified by knowledge of the approximate or exact stage of the tubule cross section.


Assuntos
Túbulos Seminíferos/citologia , Espermatogênese/fisiologia , Acrossomo/metabolismo , Acrossomo/patologia , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Knockout , Epitélio Seminífero/citologia , Epitélio Seminífero/patologia , Túbulos Seminíferos/patologia , Espermátides/metabolismo , Espermátides/patologia , Espermatogênese/genética , Coloração e Rotulagem/métodos , Fatores de Transcrição/genética
20.
Reproduction ; 143(5): 611-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22393026

RESUMO

Homeobox genes encode transcription factors that regulate diverse developmental events. The largest known homeobox gene cluster - the X-linked mouse reproductive homeobox (Rhox) cluster - harbors genes whose expression patterns and functions are largely unknown. Here, we report that a member of this cluster, Rhox10, is expressed in male germ cells. Rhox10 is highly transcribed in spermatogonia in vivo and is upregulated in response to the differentiation-inducing agent retinoic acid in vitro. Using a specific RHOX10 antiserum that we generated, we found that RHOX10 protein is selectively expressed in fetal gonocytes, germline stem cells, spermatogonia, and early spermatocytes. RHOX10 protein undergoes a dramatic shift in subcellular localization as germ cells progress from mitotically arrested gonocytes to mitotic spermatogonia and from mitotic spermatogonia to early meiotic spermatocytes, consistent with RHOX10 performing different functions in these stages.


Assuntos
Epididimo/metabolismo , Proteínas de Homeodomínio/metabolismo , Espermatócitos/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Epididimo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Masculino , Meiose , Camundongos , Microscopia de Fluorescência , Mitose , Transporte Proteico , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogênese/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...