Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1651-D1660, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37843152

RESUMO

Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.


Assuntos
Produtos Agrícolas , Bases de Dados Genéticas , Produtos Agrícolas/genética , Transcriptoma , Genoma de Planta
2.
Nucleic Acids Res ; 52(D1): D1121-D1130, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37843156

RESUMO

Biomarkers play an important role in various area such as personalized medicine, drug development, clinical care, and molecule breeding. However, existing animals' biomarker resources predominantly focus on human diseases, leaving a significant gap in non-human animal disease understanding and breeding research. To address this limitation, we present BioKA (Biomarker Knowledgebase for Animals, https://ngdc.cncb.ac.cn/bioka), a curated and integrated knowledgebase encompassing multiple animal species, diseases/traits, and annotated resources. Currently, BioKA houses 16 296 biomarkers associated with 951 mapped diseases/traits across 31 species from 4747 references, including 11 925 gene/protein biomarkers, 1784 miRNA biomarkers, 1043 mutation biomarkers, 773 metabolic biomarkers, 357 circRNA biomarkers and 127 lncRNA biomarkers. Furthermore, BioKA integrates various annotations such as GOs, protein structures, protein-protein interaction networks, miRNA targets and so on, and constructs an interactive knowledge network of biomarkers including circRNA-miRNA-mRNA associations, lncRNA-miRNA associations and protein-protein associations, which is convenient for efficient data exploration. Moreover, BioKA provides detailed information on 308 breeds/strains of 13 species, and homologous annotations for 8784 biomarkers across 16 species, and offers three online application tools. The comprehensive knowledge provided by BioKA not only advances human disease research but also contributes to a deeper understanding of animal diseases and supports livestock breeding.


Assuntos
Biomarcadores , Bases de Conhecimento , Animais , MicroRNAs/genética , Proteínas , RNA Circular , RNA Longo não Codificante
3.
Talanta ; 253: 123807, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115103

RESUMO

A widespread and escalating public health problem worldwide is foodborne illness, and foodborne Salmonella infection is one of the most common causes of human illness.For the three most pathogenic Salmonella serotypes, Raman spectroscopy was employed to acquire spectral data.As machine learning offers high efficiency and accuracy, we have chosen the convolutional neural network(CNN), which is suitable for solving multi-classification problems, to do in-depth mining and analysis of Raman spectral data.To optimize the instrument parameters, we compared three laser wavelengths: 532, 638, and 785 nm.Ultimately, the 532 nm wavelength was chosen as the most effective for detecting Salmonella.A pre-processing step is necessary to remove interference from the background noise of the Raman spectrum.Our study compared the effects of five spectral preprocessing methods, Savitzky-Golay smoothing (SG), Multivariate Scatter Correction (MSC), Standard Normal Variate (SNV), and Hilbert Transform (HT), on the predictive power of CNN models.Accuracy(ACC), Precision, Recall, and F1-score 4 machine learning evaluation indicators are used to evaluate the model performance under different preprocessing methods.In the results, SG combined with SNV was found to be the most accurate spectral pre-processing method for predicting Salmonella serotypes using Raman spectroscopy, achieving an accuracy of 98.7% for the training set and over 98.5% for the test set in CNN model.Pre-processing spectral data using this method yields higher accuracy than other methods.As a conclusion, the results of this study demonstrate that Raman spectroscopy when used in conjunction with a convolutional neural network model enables the rapid identification of three Salmonella serotypes at the single-cell level, and that the model has a great deal of potential for distinguishing between different serotypes of pathogenic bacteria and closely related bacterial species.This is vital to preventing outbreaks of foodborne illness and the spread of foodborne pathogens.


Assuntos
Aprendizado de Máquina , Análise Espectral Raman , Humanos , Salmonella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...