Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979166

RESUMO

Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.

3.
Cancer Discov ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959428

RESUMO

Immunotherapies have shown great promise in pleural mesothelioma (PM), yet most patients still do not achieve significant clinical response, highlighting the importance of improving understanding of the tumor microenvironment (TME). Here, we utilized high-throughput, single-cell RNA-sequencing to de novo identify 54 expression programs and construct a comprehensive cellular catalogue of the PM TME. We found four cancer-intrinsic programs associated with poor disease outcome and a novel fetal-like, endothelial cell population that likely responds to VEGF signaling and promotes angiogenesis. Throughout cellular compartments, we observe substantial difference in the TME associated with a cancer-intrinsic sarcomatoid signature, including enrichment in fetal-like endothelial cells, CXCL9+ macrophages, cytotoxic, exhausted, and regulatory T cells, which we validated using imaging and bulk deconvolution analyses on independent cohorts. Finally, we show, both computationally and experimentally, that NKG2A-HLA-E interaction between NK and tumor cells represents an important new therapeutic axis in PM, especially for epithelioid cases.

4.
Immunity ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878769

RESUMO

Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.

5.
Cell Rep Med ; 5(6): 101584, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776911

RESUMO

Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.


Assuntos
Medula Óssea , Imunidade Inata , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Imunidade Inata/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Feminino , Masculino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/tratamento farmacológico
6.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771877

RESUMO

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Assuntos
Nanopartículas , RNA Mensageiro , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lipídeos/química , Modelos Animais de Doenças , Masculino , Lipossomos
7.
Cancer ; 130(14): 2416-2439, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687639

RESUMO

Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.


Assuntos
Histiocitose de Células de Langerhans , Humanos , Histiocitose de Células de Langerhans/tratamento farmacológico
8.
Clin Cancer Res ; 30(10): 2097-2110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457288

RESUMO

PURPOSE: Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS: Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS: Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS: Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeça e Pescoço , Terapia Neoadjuvante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Masculino , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Pessoa de Meia-Idade , Feminino , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Terapia Neoadjuvante/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Adulto , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
9.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
10.
Science ; 383(6685): eadi3808, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386728

RESUMO

Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.


Assuntos
Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II , Vigilância Imunológica , Perda de Heterozigosidade , Neoplasias Pulmonares , Humanos , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Macrófagos Alveolares/imunologia , Fatores de Risco , Fumar/imunologia , Vigilância Imunológica/genética , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
11.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326622

RESUMO

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Metaloproteinase 8 da Matriz , Monócitos , Estresse Psicológico , Animais , Humanos , Camundongos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/enzimologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Espaço Extracelular/metabolismo , Metaloproteinase 8 da Matriz/sangue , Metaloproteinase 8 da Matriz/deficiência , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/química , Monócitos/imunologia , Monócitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Tecido Parenquimatoso/metabolismo , Análise da Expressão Gênica de Célula Única , Comportamento Social , Isolamento Social , Estresse Psicológico/sangue , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo
12.
Science ; 383(6680): eadg7942, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236961

RESUMO

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Síndrome de COVID-19 Pós-Aguda , Proteoma , Tromboinflamação , Humanos , Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/metabolismo , Síndrome de COVID-19 Pós-Aguda/sangue , Síndrome de COVID-19 Pós-Aguda/complicações , Síndrome de COVID-19 Pós-Aguda/imunologia , Tromboinflamação/sangue , Tromboinflamação/imunologia , Biomarcadores/sangue , Proteômica , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
13.
Nature ; 625(7993): 166-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057662

RESUMO

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Assuntos
Medula Óssea , Carcinogênese , Interleucina-4 , Mielopoese , Transdução de Sinais , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Monócitos/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos
14.
Immunity ; 56(12): 2665-2669, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091944

RESUMO

Vaccines have stemmed many infectious diseases, but when SARS-CoV-2 emerged, traditional vaccine development would not have been fast enough. This year's Nobel Prize in Physiology or Medicine recognizes work that enabled the rapid development of mRNA vaccines, which halted the COVID-19 pandemic. The feat was a product of basic biological insights coupled with technological innovations, which have transformed vaccine design.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas de mRNA , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas/genética
15.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091952

RESUMO

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Assuntos
Histiocitose de Células de Langerhans , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , Histiocitose de Células de Langerhans/terapia , Encéfalo/metabolismo , Células Mieloides/metabolismo , Diferenciação Celular
16.
EBioMedicine ; 98: 104886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995467

RESUMO

BACKGROUND: The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era. METHODS: We studied the humoral and cellular immune responses before and after bivalent booster immunization in 48 MM patients. Spike binding IgG antibody levels were measured by SARS-CoV-2 spike binding ELISA and neutralization capacity was assessed by a SARS-CoV-2 multi-cycle microneutralization assays to assess inhibition of live virus. We measured spike specific T-cell function using the QuantiFERON SARS-CoV-2 (Qiagen) assay as well as flow-cytometry based T-cell. In a subset of 38 patients, high-dimensional flow cytometry was performed to identify immune cell subsets associated with lack of humoral antibodies. FINDINGS: We find that bivalent vaccination provides significant boost in protection to the omicron variant in our MM patients, in a treatment specific manner. MM patients remain vulnerable to newer variants with mutations in the spike portion. Anti-CD38 and anti-BCMA therapies affect the immune machinery needed to produce antibodies. INTERPRETATION: Our study highlights varying immune responses observed in MM patients after receiving bivalent COVID-19 vaccination. Specifically, a subgroup of MM patients undergoing anti-CD38 and anti-BCMA therapy experience impairment in immune cells such DCs, B cells, NK cells and TFH cells, leading to an inability to generate adequate humoral and cellular responses to vaccination. FUNDING: National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), NCI Serological Sciences Network for COVID-19 (SeroNet) and The Icahn School of Medicine at Mount Sinai.


Assuntos
COVID-19 , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Imunoglobulina G , Imunidade , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação
17.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873371

RESUMO

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.

18.
Nat Cell Biol ; 25(9): 1332-1345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37605008

RESUMO

MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.


Assuntos
Fibroblastos Associados a Câncer , Histonas , Melanoma , Animais , Camundongos , Cromatina/genética , Expressão Gênica , Histonas/genética , Melanoma/genética , Microambiente Tumoral/genética
20.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487664

RESUMO

BACKGROUND: Cancer immunotherapies are generally effective in patients whose tumors contain a priori primed T-cells reactive to tumor antigens (TA). One approach to prime TA-reactive T-cells is to administer immunostimulatory molecules, cells, or pathogens directly to the tumor site, that is, in situ vaccination (ISV). We recently described an ISV using Flt3L to expand and recruit dendritic cells (DC), radiotherapy to load DC with TA, and pattern recognition receptor agonists (PRRa) to activate TA-loaded DC. While ISV trials using synthetic PRRa have yielded systemic tumor regressions, the optimal method to activate DCs is unknown. METHODS: To discover optimal DC activators and increase access to clinical grade reagents, we assessed whether viral or bacterial components found in common pathogen vaccines are an effective source of natural PRRa (naPRRa). Using deep profiling (155-metric) of naPRRa immunomodulatory effects and gene editing of specific PRR, we defined specific signatures and molecular mechanisms by which naPRRa potentiate T-cell priming. RESULTS: We observed that vaccine naPRRa can be even more potent in activating Flt3L-expanded murine and human DCs than synthetic PRRa, promoting cross-priming of TA-reactive T-cells. We developed a mechanistically diverse naPRRa combination (BCG, PedvaxHIB, Rabies) and noted more potent T-cell cross-priming than with any single naPRRa. The naPRRa triplet-as part of Flt3L-primed ISV-induced greater intratumoral CD8 T-cell infiltration, T-cells reactive to a newly defined tumorous neoantigen, durable tumor regressions. CONCLUSIONS: This work provides rationale for the translation of pathogen vaccines as FDA-approved clinical-grade DC activators which could be exploited as immune-stimulants for early phase trials.


Assuntos
Linfócitos T CD8-Positivos , Apresentação Cruzada , Humanos , Animais , Camundongos , Vacinação , Edição de Genes , Imunização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...