Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260370

RESUMO

Although an increased risk of the skin cancer melanoma in people with Parkinson's Disease (PD) has been shown in multiple studies, the mechanisms involved are poorly understood, but increased expression of the PD-associated protein alpha-synuclein (αSyn) in melanoma cells may be important. Our previous work suggests that αSyn can facilitate DNA double-strand break (DSB) repair, promoting genomic stability. We now show that αSyn is preferentially enriched within the nucleolus in the SK-MEL28 melanoma cell line, where it colocalizes with DNA damage markers and DSBs. Inducing DSBs specifically within nucleolar ribosomal DNA (rDNA) increases αSyn levels near sites of damage. αSyn knockout increases DNA damage within the nucleolus at baseline, after specific rDNA DSB induction, and prolongs the rate of recovery from this induced damage. αSyn is important downstream of ATM signaling to facilitate 53BP1 recruitment to DSBs, reducing micronuclei formation and promoting cellular proliferation, migration, and invasion.

2.
Mol Ther ; 31(12): 3545-3563, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37807512

RESUMO

Huntington's disease (HD), a genetic neurodegenerative disorder, primarily affects the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that, with short-term hNSC transplantation into the striatum of HD R6/2 mice, human cells differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here, we show that long-term (8 months) implantation of hNSCs into the striatum of HD zQ175 mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) levels, and reduces mutant huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry, single-nucleus RNA sequencing (RNA-seq), and electron microscopy demonstrate that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells, and form connections. Single-nucleus RNA-seq analysis also shows restoration of several mHTT-mediated transcriptional changes of endogenous striatal HD mouse cells. Remarkably, engrafted cells receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/terapia , Corpo Estriado , Neurônios , Fenótipo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteína Huntingtina/genética
3.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527694

RESUMO

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Assuntos
Mucuna , Doença de Parkinson , Extratos Vegetais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ácido Glutâmico/metabolismo , Biomarcadores/metabolismo , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Córtex Motor/patologia , Mucuna/química , Extratos Vegetais/administração & dosagem , Marcha/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Animais , Camundongos
4.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499619

RESUMO

Alpha-synuclein (aSyn) is a 14 kD protein encoded by the SNCA gene that is expressed in vertebrates and normally localizes to presynaptic terminals and the nucleus. aSyn forms pathological intracellular aggregates that typify a group of important neurodegenerative diseases called synucleinopathies. Previous work in human tissue and model systems indicates that some of these aggregates can be intranuclear, but the significance of aSyn aggregation within the nucleus is not clear. We used a mouse model that develops aggregated aSyn nuclear inclusions. Using aSyn preformed fibril injections in GFP-tagged aSyn transgenic mice, we were able to induce the formation of nuclear aSyn inclusions and study their properties in fixed tissue and in vivo using multiphoton microscopy. In addition, we analyzed human synucleinopathy patient tissue to better understand this pathology. Our data demonstrate that nuclear aSyn inclusions may form through the transmission of aSyn between neurons, and these intranuclear aggregates bear the hallmarks of cytoplasmic Lewy pathology. Neuronal nuclear aSyn inclusions can form rod-like structures that do not contain actin, excluding them from being previously described nuclear actin rods. Longitudinal, in vivo multiphoton imaging indicates that certain morphologies of neuronal nuclear aSyn inclusions predict cell death within 14 days. Human multiple system atrophy cases contain neurons and glia with similar nuclear inclusions, but we were unable to detect such inclusions in Lewy body dementia cases. This study suggests that the dysregulation of a nuclear aSyn function associated with nuclear inclusion formation could play a role in the forms of neurodegeneration associated with synucleinopathy.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Sinucleinopatias , Animais , Camundongos , Humanos , alfa-Sinucleína/metabolismo , Actinas , Atrofia de Múltiplos Sistemas/metabolismo , Doença por Corpos de Lewy/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Morte Celular
5.
Nat Commun ; 12(1): 5740, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593806

RESUMO

NG2 glia, also known as oligodendrocyte precursor cells (OPCs), play an important role in proliferation and give rise to myelinating oligodendrocytes during early brain development. In contrast to other glial cell types, the most intriguing aspect of NG2 glia is their ability to directly sense synaptic inputs from neurons. However, whether this synaptic interaction is bidirectional or unidirectional, or its physiological relevance has not yet been clarified. Here, we report that NG2 glia form synaptic complexes with hippocampal interneurons and that selective photostimulation of NG2 glia (expressing channelrhodopsin-2) functionally drives GABA release and enhances inhibitory synaptic transmission onto proximal interneurons in a microcircuit. The mechanism involves GAD67 biosynthesis and VAMP-2 containing vesicular exocytosis. Further, behavioral assays demonstrate that NG2 glia photoactivation triggers anxiety-like behavior in vivo and contributes to chronic social defeat stress.


Assuntos
Ansiedade/psicologia , Hipocampo/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Estresse Psicológico/complicações , Ácido gama-Aminobutírico/metabolismo , Animais , Ansiedade/etiologia , Ansiedade/patologia , Diferenciação Celular , Modelos Animais de Doenças , Exocitose , Glutamato Descarboxilase/biossíntese , Hipocampo/citologia , Humanos , Interneurônios/patologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Derrota Social , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Sinapses/patologia , Transmissão Sináptica/fisiologia , Proteína 2 Associada à Membrana da Vesícula/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35505895

RESUMO

Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14-21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting cognitive flexibility, an mPFC-dependent behavior. ELSD caused impaired cued fear extinction (indicating cognitive inflexibility), increased dendritic spine density, and decreased glutamate immunogold-labeling in vesicular glutamate transporter 1 (vGLUT1)-labeled presynaptic nerve terminals within mPFC. Our results have profound implications for neurodevelopmental disorders in humans such as autism spectrum disorder that also show poor sleep, impaired social behavior, cognitive inflexibility, as well as altered dendritic spine density and glutamate changes in mPFC, and imply that poor sleep may cause these changes.

7.
Mol Psychiatry ; 26(9): 4754-4769, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32366950

RESUMO

The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.


Assuntos
Transtorno do Espectro Autista , Ácido Glutâmico , Animais , Antiporters , Transtorno do Espectro Autista/genética , Cistina , Camundongos , Proteômica , Interação Social
8.
Front Cell Neurosci ; 15: 796635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975413

RESUMO

The astrocytic cystine/glutamate antiporter system x c - (with xCT as the specific subunit) imports cystine in exchange for glutamate and has been shown to interact with multiple pathways in the brain that are dysregulated in age-related neurological disorders, including glutamate homeostasis, redox balance, and neuroinflammation. In the current study, we investigated the effect of genetic xCT deletion on lactacystin (LAC)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of the nigrostriatal pathway, as models for Parkinson's disease (PD). Dopaminergic neurons of adult xCT knock-out mice (xCT-/-) demonstrated an equal susceptibility to intranigral injection of the proteasome inhibitor LAC, as their wild-type (xCT+/+) littermates. Contrary to adult mice, aged xCT-/- mice showed a significant decrease in LAC-induced degeneration of nigral dopaminergic neurons, depletion of striatal dopamine (DA) and neuroinflammatory reaction, compared to age-matched xCT+/+ littermates. Given this age-related protection, we further investigated the sensitivity of aged xCT-/- mice to chronic and progressive MPTP treatment. However, in accordance with our previous observations in adult mice (Bentea et al., 2015a), xCT deletion did not confer protection against MPTP-induced nigrostriatal degeneration in aged mice. We observed an increased loss of nigral dopaminergic neurons, but equal striatal DA denervation, in MPTP-treated aged xCT-/- mice when compared to age-matched xCT+/+ littermates. To conclude, we reveal age-related protection against proteasome inhibition-induced nigrostriatal degeneration in xCT-/- mice, while xCT deletion failed to protect nigral dopaminergic neurons of aged mice against MPTP-induced toxicity. Our findings thereby provide new insights into the role of system x c - in mechanisms of dopaminergic cell loss and its interaction with aging.

9.
Eur J Neurosci ; 53(7): 2061-2077, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32619030

RESUMO

Loss of nigrostriatal dopamine (DA) in Parkinson's disease results in over-activation/bursting of the subthalamic nucleus (STN). The STN projects to the substantia nigra (SN) pars compacta (SNpc) and pars reticulata (SNpr). The vesicular glutamate transporter 2 (Vglut2) is localized within at least STN terminals synapsing within the SN, but it is not known if there are differential changes in the Vglut2+ input to the SNpc versus SNpr following DA loss. The goal/rationale of this current study was to determine whether there were differential changes in the density/levels of glutamate immuno-gold labeling within Vglut2+ nerve terminals synapsing in the SNpc/SNpr and in the proportion of Vglut2+ terminals contacting tyrosine hydroxylase (TH) positively(+) or negatively(-) labeled dendrites following DA loss. Within the SNpc, there was a significant increase (51.3%) in the density of nerve terminal glutamate immuno-gold labeling within Vglut2+ terminals synapsing on TH(-) dendrites following MPTP versus the vehicle (VEH) group. There was a significant decrease (16%) in the percentage of Vglut2+ terminals contacting TH(+) labeled dendrites in the MPTP- versus VEH-treated group within the SNpc. Within the SNpr, there was a significant decrease in the density of glutamate immuno-gold labeling in Vglut2+ terminals contacting TH(+) (71.5%) and TH(-) (55.5%) labeled dendrites, suggesting an increase in glutamate release. There was no change in the percentage of Vglut2+ terminals contacting TH(+) or TH(-) dendrites in the SNpr. We conclude that there is a differential effect following DA loss on the glutamate input from Vglut2+ terminals synapsing within the SNpr versus SNpc.


Assuntos
Doença de Parkinson , Parte Reticular da Substância Negra , Animais , Dopamina , Camundongos , Parte Compacta da Substância Negra , Substância Negra
10.
Acta Neuropathol Commun ; 8(1): 150, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859276

RESUMO

It is necessary to develop an understanding of the specific mechanisms involved in alpha-synuclein aggregation and propagation to develop disease modifying therapies for age-related synucleinopathies, including Parkinson's disease and Dementia with Lewy Bodies. To adequately address this question, we developed a new transgenic mouse model of synucleinopathy that expresses human A53T SynGFP under control of the mouse prion protein promoter. Our characterization of this mouse line demonstrates that it exhibits several distinct advantages over other, currently available, mouse models. This new model allows rigorous study of the initial location of Lewy pathology formation and propagation in the living brain, and strongly suggests that aggregation begins in axonal structures with retrograde propagation to the cell body. This model also shows expeditious development of alpha-synuclein pathology following induction with small, in vitro-generated alpha-synuclein pre-formed fibrils (PFFs), as well as accelerated cell death of inclusion-bearing cells. Using this model, we found that aggregated alpha-synuclein somatic inclusions developed first in neurons, but later showed a second wave of inclusion formation in astrocytes. Interestingly, astrocytes appear to survive much longer after inclusion formation than their neuronal counterparts. This model also allowed careful study of peripheral-to-central spread of Lewy pathology after PFF injection into the hind limb musculature. Our results clearly show evidence of progressive, retrograde trans-synaptic spread of Lewy pathology through known neuroanatomically connected pathways in the motor system. As such, we have developed a promising tool to understand the biology of neurodegeneration associated with alpha-synuclein aggregation and to discover new treatments capable of altering the neurodegenerative disease course of synucleinopathies.


Assuntos
Encéfalo/patologia , Transporte Proteico/fisiologia , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , Animais , Astrócitos/patologia , Axônios/patologia , Modelos Animais de Doenças , Feminino , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia
11.
Learn Mem ; 27(9): 372-379, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817303

RESUMO

Parkinson's disease (PD) is characterized clinically by progressive motor dysfunction; overt parkinsonism is often preceded by prodromal symptoms including disturbances in the sleep-wake cycle. Up to 80% of patients with PD also develop dementia. In humans, there are three major apolipoprotein E isoforms: E2, E3, and E4. Increased rate of dementia in PD may be associated with E4 isoform. To better understand prodromal changes associated with E4, we exposed young (3-5 mo) male and female mice expressing E3 or E4 via targeted replacement to a subchronic dosage of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We hypothesized that E4 mice would be more susceptible to MPTP-related behavioral and cognitive changes. MPTP-treated E4 mice explored novel objects longer than genotype-matched saline-treated mice. In contrast, saline-treated E3 mice preferentially explored the novel object whereas MPTP-treated E3 mice did not and showed impaired object recognition. MPTP treatment altered swim speed of E4, but not E3, mice in the water maze compared to controls. Thus, E4 carriage may influence the preclinical symptoms associated with PD. Increased efforts are warranted to study early time points in this disease model.


Assuntos
Apolipoproteína E3 , Apolipoproteína E4 , Comportamento Animal , Intoxicação por MPTP/genética , Intoxicação por MPTP/fisiopatologia , Atividade Motora , Reconhecimento Psicológico , Aprendizagem Espacial , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Reconhecimento Psicológico/fisiologia , Aprendizagem Espacial/fisiologia
12.
Neuroscience ; 433: 53-71, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142862

RESUMO

Parkinson's disease (PD) is caused by neurodegeneration of nigrostriatal neurons, resulting in dopamine (DA) stimulated motor deficits. Like brain derived neurotrophic factor (BDNF), 7,8-dihydroxyflavone (DHF) is an agonist of the tropomyosin receptor kinase-B (TrkB) and stimulates the same secondary cascades that promote neuronal growth, survival and differentiation. We used our progressive mouse model of PD by administering increasing doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) over 4 weeks (5 days/week), and then treated mice with DHF for 4 weeks after the cessation of the toxin injections (i.e., restoration). Mice treated with DHF recovered motorically, even after MPTP administration. Despite a 75% loss of tyrosine hydroxylase (TH) expression in the dorsolateral (DL) striatum in the MPTP group, mice treated with DHF had a recovery comparable to that found in the respective control. There was no recovery of DA tissue levels within the DL striatum. In both the DL striatum and substantia nigra (SN)/midbrain, phosphorylated TrkB and secondary messengers were significantly increased following DHF compared to the MPTP only group. Expression of the sprouting biomarker, superior cervical ganglion 10 (SCG10), was increased ∼20% in the DL striatum and 66% in the SN/midbrain in mice treated with DHF compared to the MPTP only group. We report that after 4 weeks of progressive MPTP administration, DHF can restore motor deficits and TH within the DL striatum in a TrkB-dependent manner. Our data suggests that DHF may help alleviate motor symptoms of PD and restore the loss of DA terminals within the striatum.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Flavonas , Marcha , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra/metabolismo , Tirosina , Tirosina 3-Mono-Oxigenase/metabolismo
13.
J Neurosci Res ; 97(12): 1706-1719, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31535395

RESUMO

Sleep complaints are an early clinical symptom of neurodegenerative disorders. Patients with Parkinson's disease (PD) experience sleep disruption (SD). The objective of this study was to determine if preexisting, chronic SD leads to a greater loss of tyrosine hydroxylase (TH) within the striatum and the substantia nigra following chronic/progressive exposure with the neurotoxin, 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Male mice underwent chronic SD for 4 weeks, then injected with vehicle (VEH) or increasing doses of MPTP for 4 weeks. There was a significant decrease in the plasma corticosterone levels in the MPTP group, an increase in the SD group, and a return to the VEH levels in the SD+MPTP group. Protein expression levels for TH in the striatum (terminals) and substantia nigra pars compacta (dopamine [DA] cell counts) revealed up to a 78% and 38% decrease, respectively, in the MPTP and SD+MPTP groups compared to their relevant VEH and SD groups. DA transporter protein expression increased in the striatum in the MPTP versus VEH group and in the SN/midbrain between the SD+MPTP and the VEH group. There was a main effect of MPTP on various gait measures (e.g., braking) relative to the SD or VEH groups. In the SD+MPTP group, there were no differences compared to the VEH group. Thus, SD, prior to administration of MPTP, has effects on serum corticosterone and gait but more importantly does not potentiate greater loss of TH within the nigrostriatal pathway compared to the MPTP group, suggesting that in PD patients with SD, there is no exacerbation of the DA cell loss.


Assuntos
Corpo Estriado/enzimologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Parkinsonianos/complicações , Transtornos Intrínsecos do Sono/etiologia , Estresse Fisiológico , Substância Negra/enzimologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Corpo Estriado/patologia , Corticosterona/sangue , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Transtornos Neurológicos da Marcha/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/análise , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Método Simples-Cego , Transtornos Intrínsecos do Sono/sangue , Transtornos Intrínsecos do Sono/fisiopatologia , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/análise , Proteínas Vesiculares de Transporte de Monoamina/análise
14.
Neuroscience ; 414: 8-27, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31220543

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and there are no effective treatments that either slow or reverse the degeneration of the dopamine (DA) pathway. Using a 4-week progressive MPTP (1-methyl-1,2,3,6-tetrahydropyridine) neurotoxin model of PD, which is characterized by neuroinflammation, loss of nigrostriatal DA, and motor dysfunction, as seen in patients with PD, we tested whether post-MPTP treatment with glatiramer acetate (GA), an immunomodulatory drug, could reverse these changes. GA restored the grip dysfunction and gait abnormalities that were evident in the MPTP treated group. The reversal of the motor dysfunction was attributable to the substantial recovery in tyrosine hydroxylase (TH) protein expression in the striatum. Within the substantia nigra pars compacta, surface cell count analysis showed a slight increase in TH+ cells following GA treatment in the MPTP group, which was not statistically different from the vehicle (VEH) group. This was associated with the recovery of BDNF (brain derived neurotrophic factor) protein levels and a reduction in the microglial marker, IBA1, protein expression within the midbrain. Alpha synuclein (syn-1) levels within the midbrain and striatum were decreased following MPTP, while GA facilitated recovery to VEH levels in the striatum in the MPTP group. Although DA tissue analysis revealed no significant increase in striatal DA or 3,4-Dihydroxyphenylacetic acid levels (DOPAC) in the MPTP group treated with GA, DA turnover (DOPAC/DA) recovered back to VEH levels following GA treatment. GA treatment effectively reversed clinical (motor dysfunction) and pathology (TH, IBA1, BDNF expression) of PD in a murine model.


Assuntos
Acetato de Glatiramer/farmacologia , Fatores Imunológicos/farmacologia , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Acetato de Glatiramer/uso terapêutico , Fatores Imunológicos/uso terapêutico , Camundongos , Proteínas dos Microfilamentos/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo
15.
Parkinsonism Relat Disord ; 60: 25-31, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30404763

RESUMO

This review focuses on the role of T lymphocytes in the pathogenesis of Parkinson's disease and highlights evidence for modulation of the T cell response as an effective neuroprotective strategy. In preclinical models of Parkinson's disease, modulation of the T cell response results in neuroprotection. Peripheral markers of T cell response show changes in Parkinson's patients relative to controls that have potential application as diagnostic and therapeutic biomarkers. The article also discusses the important immunomodulatory effects of dopamine which may confound study of T cells in patients on dopaminergic therapies, and highlights glatiramer acetate, an FDA-approved therapy for multiple sclerosis that works through modulating the T cell response, as a promising target for translation.


Assuntos
Biomarcadores , Progressão da Doença , Fatores Imunológicos/farmacologia , Inflamação , Doença de Parkinson , Linfócitos T , Animais , Biomarcadores/sangue , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/imunologia , Doença de Parkinson/sangue , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Neuroscience ; 391: 104-119, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240589

RESUMO

Substance use disorders (SUD) often co-occur with other mental disorders such as major depression (MD). Our previous findings revealed sex-dependent changes in extracellular levels of glutamate (Glu) and glutamine (Gln) in the nucleus accumbens (NAc) in Long-Evans rats that were exposed to 21 days of chronic social defeat stress (CSDS), which models MD. The current study investigated the role of a Gln transporter called sodium-coupled neutral amino acid transporter subtype 1/2 (SNAT 1/2), phosphate-activated glutaminase (PAG), and astrocytic glutamate transporter-1 (GLT-1) on CSDS animals exposed to cocaine. Before cocaine exposure, CSDS males already showed decreased levels of SNAT 1/2 in the NAc and prefrontal cortex (PFC) compared to non-CSDS controls. The reduction in SNAT 1/2 levels was associated with an increase in Gln localization in the mitochondrial outer membrane in accumbal glutamatergic nerve terminals projecting from the PFC. CSDS females showed increased GLT-1 levels in the NAc and PFC compared to non-CSDS controls. Both acute and repeated cocaine exposure attenuated locomotor responses in CSDS males but increased those in CSDS females. Cocaine reduced SNAT 1/2 levels in the NAc but increased them in the PFC in CSDS males. Additionally, both PAG and GLT-1 levels were increased in the PFC in CSDS males. On the other hand, cocaine reduced SNAT 1/2 and GLT-1 levels in the NAc and PFC in CSDS females. Our results show that CSDS altered locomotor responses upon cocaine exposure in a sex-dependent manner that may be mediated by molecules associated with the Glu-Gln transfer.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Cocaína/administração & dosagem , Transportador 2 de Aminoácido Excitatório/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/metabolismo , Feminino , Locomoção/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Long-Evans , Comportamento Social , Estresse Psicológico/complicações , Sinapses/metabolismo
17.
Front Behav Neurosci ; 12: 140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072879

RESUMO

Motor dysfunction is a hallmark of Parkinson's disease (PD); however, non-motor symptoms such as gastrointestinal dysfunction often arise prior to motor symptoms. Alterations in the gut microbiome have been proposed as the earliest event in PD pathogenesis. PD symptoms often demonstrate sex differences. Glutamatergic neurotransmission has long been linked to PD pathology. Metabotropic glutamate receptors (mGlu), a family of G protein-coupled receptors, are divided into three groups, with group III mGlu receptors mainly localized presynaptically where they can inhibit glutamate release in the CNS as well as in the gut. Additionally, the gut microbiome can communicate with the CNS via the gut-brain axis. Here, we assessed whether deficiency of metabotropic glutamate receptor 8 (mGlu8), group III mGlu, modulates the effects of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on behavioral and cognitive performance in female and male mice. We studied whether these effects are associated with changes in striatal tyrosine hydroxylase (TH) levels and the gut microbiome. Two-week sub-chronic MPTP increased activity of female and male wild-type (WT) and mGlu8 knockout (KO) mice in the open field. MPTP also showed genotype- and sex-dependent effects. MPTP increased the time WT, but not KO, females and males spent exploring objects. In WT mice, MPTP improved sensorimotor function in males but impaired it in females. Further, MPTP impaired cued fear memory in WT, but not KO, male mice. MPTP reduced striatal TH levels in WT and KO mice but these effects were only pronounced in males. MPTP treatment and genotype affected the diversity of the gut microbiome. In addition, there were significant associations between microbiome α-diversity and sensorimotor performance, as well as microbiome composition and fear learning. These results indicate that specific taxa may directly affect motor and fear learning or that the same physiological effects that enhance both forms of learning also alter diversity of the gut microbiome. MPTP's effect on motor and cognitive performance may then be, at least in part, be mediated by the gut microbiome. These data also support mGlu8 as a novel therapeutic target for PD and highlight the importance of including both sexes in preclinical studies.

18.
Sleep ; 41(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315422

RESUMO

Study Objectives: In previous work, dietary branched-chain amino acid (BCAA) supplementation, precursors to de novo glutamate and γ-aminobutyric acid (GABA) synthesis, restored impaired sleep-wake regulation and orexin neuronal activity following traumatic brain injury (TBI) in mice. TBI was speculated to reduce orexin neuronal activity through decreased regional excitatory (glutamate) and/or increased inhibitory (GABA) input. Therefore, we hypothesized that TBI would decrease synaptic glutamate and/or increase synaptic GABA in nerve terminals contacting orexin neurons, and BCAA supplementation would restore TBI-induced changes in synaptic glutamate and/or GABA. Methods: Brain tissue was processed for orexin pre-embed diaminobenzidine labeling and glutamate or GABA postembed immunogold labeling. The density of glutamate and GABA immunogold within presynaptic nerve terminals contacting orexin-positive lateral hypothalamic neurons was quantified using electron microscopy in three groups of mice (n = 8 per group): Sham/noninjured controls, TBI without BCAA supplementation, and TBI with BCAA supplementation (given for 5 days, 48 hr post-TBI). Glutamate and GABA were also quantified within the cortical penumbral region (layer VIb) adjacent to the TBI lesion. Results: In the hypothalamus and cortex, TBI decreased relative glutamate density in presynaptic terminals making axodendritic contacts. However, BCAA supplementation only restored relative glutamate density within presynaptic terminals contacting orexin-positive hypothalamic neurons. BCAA supplementation did not change relative glutamate density in presynaptic terminals making axosomatic contacts, or relative GABA density in presynaptic terminals making axosomatic or axodendritic contacts, within either the hypothalamus or cortex. Conclusions: These results suggest TBI compromises orexin neuron function via decreased glutamate density and highlight BCAA supplementation as a potential therapy to restore glutamate density to orexin neurons.


Assuntos
Lesões Encefálicas Traumáticas/dietoterapia , Lesões Encefálicas Traumáticas/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Dietoterapia/métodos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/patologia , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Sono/fisiologia
19.
Stem Cell Reports ; 10(1): 58-72, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233555

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.


Assuntos
Cognição , Doença de Huntington/terapia , Atividade Motora , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica , Animais , Linhagem Celular , Modelos Animais de Doenças , Xenoenxertos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia
20.
Neurobiol Dis ; 108: 29-44, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28757327

RESUMO

Huntington's disease (HD) is a fatal genetic disorder characterized by cell death of medium-sized spiny neurons (MSNs) in the striatum, traditionally attributed to excessive glutamate inputs and/or receptor sensitivity. While changes in corticostriatal projections have typically been studied in mouse models of HD, morphological and functional alterations in thalamostriatal projections have received less attention. In this study, an adeno-associated virus expressing channelrhodopsin-2 under the calcium/calmodulin-dependent protein kinase IIα promoter was injected into the sensorimotor cortex or the thalamic centromedian-parafascicular nuclear complex in the R6/2 mouse model of HD, to permit selective activation of corticostriatal or thalamostriatal projections, respectively. In symptomatic R6/2 mice, peak amplitudes and areas of corticostriatal glutamate AMPA and NMDA receptor-mediated responses were reduced. In contrast, although peak amplitudes of AMPA and NMDA receptor-mediated thalamostriatal responses also were reduced, the areas remained unchanged due to an increase in response decay times. Blockade of glutamate reuptake further increased response areas and slowed rise and decay times of NMDA responses. These effects appeared more pronounced at thalamostriatal synapses of R6/2 mice, suggesting increased activation of extrasynaptic NMDA receptors. In addition, the probability of glutamate release was higher at thalamostriatal than corticostriatal synapses, particularly in R6/2 mice. Morphological studies indicated that the density of all excitatory synaptic contacts onto MSNs was reduced, which matches the basic electrophysiological findings of reduced amplitudes. There was a consistent reduction in the area of spines but little change in presynaptic terminal size, indicating that the postsynaptic spine may be more significantly affected than presynaptic terminals. These results highlight the significant and differential contribution of the thalamostriatal projection to glutamate excitotoxicity in HD.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Doença de Huntington/fisiopatologia , Tálamo/fisiopatologia , Animais , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Doença de Huntington/patologia , Imuno-Histoquímica , Masculino , Camundongos Transgênicos , Microscopia Eletrônica , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/patologia , Sinapses/fisiologia , Tálamo/patologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...