Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Chem Inf Model ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949724

RESUMO

Ameliorating microglia-mediated neuroinflammation is a crucial strategy in developing new drugs for neurodegenerative diseases. Plant compounds are an important screening target for the discovery of drugs for the treatment of neurodegenerative diseases. However, due to the spatial complexity of phytochemicals, it becomes particularly important to evaluate the effectiveness of compounds while avoiding the mixing of cytotoxic substances in the early stages of compound screening. Traditional high-throughput screening methods suffer from high cost and low efficiency. A computational model based on machine learning provides a novel avenue for cytotoxicity determination. In this study, a microglia cytotoxicity classifier was developed using a machine learning approach. First, we proposed a data splitting strategy based on the molecule murcko generic scaffold, under this condition, three machine learning approaches were coupled with three kinds of molecular representation methods to construct microglia cytotoxicity classifier, which were then compared and assessed by the predictive accuracy, balanced accuracy, F1-score, and Matthews Correlation Coefficient. Then, the recursive feature elimination integrated with support vector machine (RFE-SVC) dimension reduction method was introduced to molecular fingerprints with high dimensions to further improve the model performance. Among all the microglial cytotoxicity classifiers, the SVM coupled with ECFP4 fingerprint after feature selection (ECFP4-RFE-SVM) obtained the most accurate classification for the test set (ACC of 0.99, BA of 0.99, F1-score of 0.99, MCC of 0.97). Finally, the Shapley additive explanations (SHAP) method was used in interpreting the microglia cytotoxicity classifier and key substructure smart identified as structural alerts. Experimental results show that ECFP4-RFE-SVM have reliable classification capability for microglia cytotoxicity, and SHAP can not only provide a rational explanation for microglia cytotoxicity predictions, but also offer a guideline for subsequent molecular cytotoxicity modifications.

2.
Bioorg Chem ; 150: 107570, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38941695

RESUMO

Axially chiral compounds are well known in medicinal chemistry of natural products, but their absolute configurations and bioactivities are rarely reported and studied. In this study, eleven undescribed axially chiral dihydrophenanthrene dimers, as well as twenty-five known dihydrophenanthrenes, were isolated from the entire plant of Pholidota yunnanensis. Their structures were elucidated by comprehensive spectroscopic analysis. A method for determining the absolute configurations of enantiomers was developed based on the rotational barriers and calculated ECD spectra. Additionally, the activities of all isolated compounds were assessed in LPS-induced BV-2 microglial cells. Most dihydrophenanthrenes exhibited significant NO inhibitory activities, and compound 7 showed the most potent inhibitory effect with an IC50 value of 1.5 µM, compared to the positive control minocycline. The immunofluorescence and western blot results revealed that compound 7 suppressed the expression of Iba-1, iNOS and COX-2 in LPS-stimulated BV-2 microglial cells.

3.
Int Immunopharmacol ; 137: 112524, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909494

RESUMO

Ischemic stroke (IS) is a serious threat to human health. The naturally derived small molecule (E)-5-(2-(quinolin-4-yl) ethenyl) benzene-1,3-diol (RV01) is a quinolinyl analog of resveratrol with great potential in the treatment of IS. The aim of this study was to investigate the potential mechanisms and targets for the protective effect of the RV01 on IS. The mouse middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reperfusion (OGD/R) models were employed to evaluate the effects of RV01 on ischemic injury and neuroprotection. RV01 was found to significantly increase the survival of SH-SY5Y cells and prevent OGD/R-induced apoptosis in SH-SY5Y cells. Furthermore, RV01 reduced oxidative stress and mitochondrial damage by promoting mitophagy in OGD/R-exposed SH-SY5Y cells. Knockdown of CK2α' abolished the RV01-mediated promotion on mitophagy and alleviation on mitochondrial damage as well as neuronal injury after OGD/R. These results were further confirmed by molecular docking, drug affinity responsive target stability and cellular thermal shift assay analysis. Importantly, in vivo study showed that treatment with the CK2α' inhibitor CX-4945 abolished the RV01-mediated alleviation of cerebral infarct volume, brain edema, cerebral blood flow and neurological deficit in MCAO/R mice. These data suggest that RV01 effectively reduces damage caused by acute ischemic stroke by promoting mitophagy through its interaction with CK2α'. These findings offer valuable insights into the underlying mechanisms through which RV01 exerts its therapeutic effects on IS.

4.
Bioorg Chem ; 149: 107484, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810482

RESUMO

A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 µM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 µM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.


Assuntos
Cumarínicos , Relação Dose-Resposta a Droga , Ferula , Lipopolissacarídeos , Microglia , Óxido Nítrico , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/isolamento & purificação , Ferula/química , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Animais , Estrutura Molecular , Camundongos , Relação Estrutura-Atividade , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Raízes de Plantas/química
5.
Biomolecules ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785928

RESUMO

The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.


Assuntos
Campos Magnéticos , Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Melanoma/terapia , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico
6.
J Colloid Interface Sci ; 669: 349-357, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718588

RESUMO

Producing hydrogen through electrocatalytic overall water splitting with ampere-level current density is still limited by the high cost and poor stability of electrocatalysts. In this work, a new type Ni2P/MnP4 heterojunction composite material was designed and prepared as bifunctional electrocatalyst. Based on XPS spectra and theoretical calculation, the formation of Ni2P/MnP4 heterojunction successfully modulates the local electronic structure of Ni2P and enhances the ionization of H and Ni by increasing the electron transfer rate. Moreover, the special nanovilli structure and superhydropholic/superaerophobic surface of Ni2P/MnP4 heterojunction accelerates the transfer of electrolyte and gaseous products. Benefiting from these advantages, the as-prepared Ni2P/MnP4/CF not only exhibits superior electrocatalytic performance, which can release 10 mA/cm2 current density with a low overpotential of 69 mV and 247 mV for HER and OER respectively, but also shows admirable stability of continuous overall water splitting to drive 1000 mA/cm2 for 180 h without notable activity degradation. We believe this material possesses outstanding potential for industrial applications, and our strategy may provide a new pathway to design relative materials.

7.
IEEE Trans Nanobioscience ; 23(3): 482-490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625761

RESUMO

Pulsed magnetic field treatment can enhance cell membrane permeability, allowing large molecular substances that normally cannot pass through the cell membrane to enter the cell. This research holds significant prospects for biomedical applications. However, the mechanism underlying pulsed magnetic field-induced cell permeabilization remains unclear, impeding further progress in research related to pulsed magnetic field. Currently, hypotheses about the mechanism are struggling to explain experimental results. Therefore, this study developed a parameter-adjustable pulsed magnetic field generator and designed experiments. Starting from the widely accepted hypothesis of "induced electric fields by pulsed magnetic field," we conducted a preliminary exploration of the biophysical mechanisms underlying pulsed magnetic field-induced cell permeabilization. Finally, we have arrived at an intriguing conclusion: under the current technical parameters, the impact of the pulsed magnetic field itself is the primary factor influencing changes in cell membrane permeability, rather than the induced electric field. This conclusion holds significant implications for understanding the biophysical mechanisms behind pulsed magnetic field therapy and its potential biomedical applications.


Assuntos
Permeabilidade da Membrana Celular , Campos Magnéticos , Permeabilidade da Membrana Celular/efeitos da radiação , Permeabilidade da Membrana Celular/fisiologia , Animais , Humanos , Membrana Celular/efeitos da radiação , Membrana Celular/fisiologia
8.
Curr Med Imaging ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676488

RESUMO

BACKGROUND: Some patients with cancer-administered anti-cancer drugs may develop renal lesions with low-level enhancement on follow-up abdominal computed tomography (CT). OBJECTIVE: To explore the clinical significance of renal lesions with low-level enhancement on CT after exposure to anti-cancer drugs. METHODS: Medical records of patients with cancer who developed renal lesions on CT after exposure to anti-cancer drugs were retrospectively reviewed. Renal lesions were scored according to the extent of involvement, CT attenuation values of lesions and normal parenchyma were measured on precontrast CT and three phases of contrast-enhanced CT, and changes in serum creatinine (SCr) from one week before exposure to drugs to one week before and after the appearance of renal lesions were recorded. RESULTS: This study included 54 patients (86 lesions). Lesions were slightly lower density on pre-contrast CT, and less enhancing than normal renal parenchyma, especially in the delayed phase. Lesions were wedge-shaped, and involved the renal pyramid and associated renal cortex, as well as, were single or multiple, and occurred in the unilateral or bilateral kidneys. There were patchy and cord-like shadows of increased density in adjacent perirenal adipose tissue. During follow-up, lesions disappeared in 15 patients and persisted in 39 patients without significant progression. There were significant differences in renal lesions and normal renal parenchyma CT attenuation values in each phase of contrast-enhanced CT. Change in SCr level was significantly positively correlated with lesion score. CONCLUSION: Renal lesions with low-level enhancement on CT suggest early drug-induced kidney injury. These findings will inform clinical decision-making.

9.
Phytomedicine ; 128: 155406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520834

RESUMO

BACKGROUND: Ischemic stroke (IS) is characterized as a detrimental cerebrovascular disease with high mortality and disability. Ferroptosis is a novel mechanism involved in neuronal death. There is a close connection between IS and ferroptosis, and inhibiting ferroptosis may provide an effective strategy for treating IS. Our previous investigations have discovered that kellerin, the active compound of Ferula sinkiangensis K. M. Shen, possesses the capability to shield against cerebral ischemia injury. PURPOSE: Our objective is to clarify the relationship between the neuroprotective properties of kellerin against IS and its ability to modulate ferroptosis, and investigate the underlying regulatory pathway. STUDY DESIGN: We investigated the impact and mechanism of kellerin in C57BL/6 mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) as well as SH-SY5Y cells exposed to oxygen-glucose deprivation/ re-oxygenation (OGD/R). METHODS: The roles of kellerin on neurological severity, cerebral infarction and edema were investigated in vivo. The regulatory impacts of kellerin on ferroptosis, mitochondrial damage and Akt/Nrf2 pathway were explored. Molecular docking combined with drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) were performed to analyze the potential target proteins for kellerin. RESULTS: Kellerin protected against IS and inhibited ferroptosis in vivo. Meanwhile, kellerin improved the neuronal damage caused by OGD/R and suppressed ferroptosis by inhibiting the production of mitochondrial ROS in vitro. Further we found that kellerin directly interacted with Akt and enhanced its phosphorylation, leading to the increase of Nrf2 nuclear translocation and its downstream antioxidant genes expression. Moreover, kellerin's inhibitory effect on ferroptosis and mitochondrial ROS release was eliminated by inhibiting Akt/Nrf2 pathway. CONCLUSIONS: Our study firstly demonstrates that the neuroprotective properties of kellerin against IS are related to suppressing ferroptosis through inhibiting the production of mitochondrial ROS, in which its modulation on Akt-mediated transcriptional activation of Nrf2 plays an important role. This finding shed light on the potential mechanism that kellerin exerts therapeutic effects in IS.


Assuntos
Ferroptose , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Camundongos , Humanos , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Ativação Transcricional/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos
10.
Phytomedicine ; 128: 155520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489892

RESUMO

BACKGROUND: Sepsis is considered as a severe illness due to its high mortality. Sepsis can cause septic encephalopathy, thus leading to brain injury, behavioral and cognitive dysfunction. Pyroptosis is a type of regulated cell death (RCD) and takes a crucial part in occurrence and development of sepsis. Americanin B (AMEB) is a lignan compounds, which is extracted from Vernicia fordii. In our previous study, AMEB could inhibit microglial activation in inflammatory cell model. However, the function of AMEB in septic encephalopathy mice is uncertain. It would be worthwhile to ascertain the role and mechanism of AMEB in sepsis. PURPOSE: Current study designs to certify the relationship between pyroptosis and septic encephalopathy, and investigate whether AMEB can restrain NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and restrict pyroptosis by targeting NLRP3 in septic mice model. STUDY DESIGN: C57BL/6 mice were utilized to perform sepsis model in vivo experiments. BV-2 cell lines were used for in vitro experiments. METHODS: In vivo sepsis model was established by lipopolysaccharide (LPS) intraperitoneal injection in male C57BL/6 J mice and in vitro model was exposed by LPS plus ATP in BV-2 cells. The survival rate was monitored on the corresponding days. NLRP3, apoptosis associated Speck-like protein (ASC), caspase-1, GasderminD (GSDMD), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) level were detected by western blotting and immunofluorescence analysis. Molecular docking, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) experiments, RNAi transfection and quantitative real-time PCR were applied to confirm the potential target of AMEB. RESULTS: The results suggested that AMEB could rise survival percentage and lighten brain injury in LPS-induced sepsis mice. In addition, AMEB could inhibit pyroptosis and the activiation of NLRP3 inflammasome. The inhibiting function of AMEB on the activiation of NLRP3 inflammasome is weakened following si-NLRP3 transfection. Moreover, AMEB exerted anti-pyroptosis effect via targeting NLRP3 protein. CONCLUSIONS: Our findings first indicate NLRP3 is an effective druggable target for septic encephalopathy related brain injury, and also provide a candidate-AMEB for the treatment of septic encephalopathy. These emerging findings on AMEB in models of sepsis suggest an innovative approach that may be beneficial in the prevention of septic encephalopathy.


Assuntos
Modelos Animais de Doenças , Indenos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Encefalopatia Associada a Sepse , Sulfonamidas , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Camundongos , Encefalopatia Associada a Sepse/tratamento farmacológico , Masculino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Furanos/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Interleucina-1beta/metabolismo
11.
Phytomedicine ; 128: 155344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493721

RESUMO

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.


Assuntos
Anti-Inflamatórios , Infarto da Artéria Cerebral Média , Microglia , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Resveratrol , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Microglia/efeitos dos fármacos , Resveratrol/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , AVC Isquêmico/tratamento farmacológico , Modelos Animais de Doenças , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular
12.
J Ethnopharmacol ; 326: 117920, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38373663

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jinhua Qinggan granules (JHQG), the traditional Chinese formula come into the market in 2016, has been proved clinically effective against coronavirus disease. Acute lung injury (ALI) is a major complication of respiratory infection such as coronavirus and influenza virus, with a high clinical fatality rate. Macrophage activation-induced inflammatory response plays a crucial role in the pathogenesis of ALI. However, the participation of inflammatory response in the efficacy of JHQG and its material basis against ALI is still unknown. AIM OF THE STUDY: The research aims to investigate the inflammatory response-involved efficacy of JHQG on ALI, explore the "ingredient-target-pathway" mechanisms, and searching for key material basis of JHQG by integrated network pharmacology and experimental validation-based approach. MATERIALS AND METHODS: Lipopolysaccharide (LPS)-induced ALI mice was established to assess the protective impact of JHQG. Network pharmacology was utilized to identify potential targets of JHQG and investigate its action mechanisms related to inflammatory response in treating ALI. The therapeutic effect and mechanism of the primary active ingredient in JHQG was verified through high performance liquid chromatography (HPLC) and a combination of wet experiments. RESULTS: JHQG remarkably alleviated lung damage in mice model via suppressing macrophage activation, and inhibiting pro-inflammatory mediator level, p-ERK and p-STAT3 expression, TLR4/NF-κB activation. Network pharmacology combined with HPLC found luteolin is the main effective component of JHQG, and it could interact with TLR4/MD2 complex, further exerting the anti-inflammatory property and the protective role against ALI. CONCLUSIONS: In summary, our finding clarified the underlying mechanisms and material basis of JHQG therapy for ALI by integrated network pharmacology and experimental validation-based strategy.


Assuntos
Lesão Pulmonar Aguda , Infecções por Coronavirus , Medicamentos de Ervas Chinesas , Animais , Camundongos , Farmacologia em Rede , Receptor 4 Toll-Like , Lesão Pulmonar Aguda/tratamento farmacológico , Cromatografia Líquida de Alta Pressão , Lipopolissacarídeos , Pulmão , NF-kappa B
13.
J Asian Nat Prod Res ; : 1-8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234138

RESUMO

An anti-neuroinflammatory activities-guided phytochemical research of Wikstroemia lungtzeensis was performed for the first time. Three undescribed carotane-type sesquiterpenes, excoecafolinols C-E (1-3), and nine known sesquiterpene derivatives were isolated from the effective ethyl acetate extract of W. lungtzeensis. Their structures were determined based on multiple spectroscopic techniques and electronic circular dichroism (ECD) spectra. Furthermore, the anti-neuroinflammatory activities of the identified compounds were evaluated in lipopolysaccharide-stimulated BV-2 cells. Among them, six components (1, 2, 4, 7, 11, 12) exhibited significant inhibitory effects on nitric oxide (NO) production, with IC50 values ranging from 10.48 to 49.41 µM (positive control minocycline, IC50 53.20 µM). Carotane-type sesquiterpenes (1, 2, 4) with high content and significant inhibitory effects, are considered to be major active ingredients of W. lungtzeensis, which might serve as potential therapeutic agents for neurodegenerative diseases.

14.
Adv Sci (Weinh) ; 11(11): e2307245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38204214

RESUMO

One of the main challenges in small molecule drug discovery is finding novel chemical compounds with desirable activity. Traditional drug development typically begins with target selection, but the correlation between targets and disease remains to be further investigated, and drugs designed based on targets may not always have the desired drug efficacy. The emergence of machine learning provides a powerful tool to overcome the challenge. Herein, a machine learning-based strategy is developed for de novo generation of novel compounds with drug efficacy termed DTLS (Deep Transfer Learning-based Strategy) by using dataset of disease-direct-related activity as input. DTLS is applied in two kinds of disease: colorectal cancer (CRC) and Alzheimer's disease (AD). In each case, novel compound is discovered and identified in in vitro and in vivo disease models. Their mechanism of actionis further explored. The experimental results reveal that DTLS can not only realize the generation and identification of novel compounds with drug efficacy but also has the advantage of identifying compounds by focusing on protein targets to facilitate the mechanism study. This work highlights the significant impact of machine learning on the design of novel compounds with drug efficacy, which provides a powerful new approach to drug discovery.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Descoberta de Drogas/métodos , Proteínas
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166934, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37931715

RESUMO

AIMS: Experimental autoimmune encephalomyelitis (EAE) is a widely used mouse model of multiple sclerosis. Rather than inducing immune response, tolerogenic dendritic cells (tDCs) have the ability to induce immune tolerance. In previous studies, we induced tDCs by 1,25-(OH)2D3 and 1,25-(OH)2D3 DCs significantly alleviated EAE symptoms. As downstream targets of 1,25-(OH)2D3, inhibition of RelB and MyD88 expression in DCs might induce tDCs and has therapeutic effect of MS. METHODS: Knockdown the expression of RelB and MyD88 with shRNA lentivirus to induce tDCs, adoptive transfer these tDCs to EAE mice, and investigate their therapeutic effects. RESULTS: Reduction of RelB expression induced tDCs. After transferring into EAE mice, tDCs with low RelB expression significantly alleviate their symptoms as well as reduce the immune cell infiltration and demyelination in spinal cord. CONCLUSION: RelB plays a key role in the antigen presenting function of DCs, and tDCs with low RelB expression is a potential treatment for EAE and MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Células Dendríticas , Esclerose Múltipla/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Medula Espinal/metabolismo
16.
J Pain Res ; 16: 3961-3970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026457

RESUMO

Purpose: Total hip arthroplasty (THA) is often associated with moderate to severe pain. The present study compared the efficacy of circum-psoas block (CPB) with supra-inguinal fascia iliaca block (SIFIB) for postoperative analgesia in patients undergoing THA. Patients and Methods: In this randomized trial, sixty-four patients undergoing THA were allocated randomly to the CPB group or SIFIB group with 40 mL of 0.3% ropivacaine. The primary outcome was dynamic pain score at 6 h postoperatively. Secondary outcomes included dynamic pain scores at 12, 24 and 48 h; static pain scores; sensory and motor block; opioid consumption; time to first opioid request; length of hospital stay; patient satisfaction; and adverse events. Results: CPB patients showed significantly lower dynamic pain scores at 6 (3.11 ± 0.66 vs 4.47 ± 0.74, respectively; P = 0.000), 12 (2.52 ± 0.73 vs 3.53 ± 0.85, respectively; P = 0.000) and 24 h (2.30 ± 0.57 vs 2.87 ± 0.71, respectively; P = 0.001) after surgery, as well as lower static pain scores at 6 and 12h (P = 0.001 and P = 0.033 respectively) than SIFIB patients. Lower opioid consumption was observed in the CPB group at 24 and 48 h (P = 0.000, both) than in the SIFIB group. Patients in the CPB group reported improved quadriceps strength at 6 and 12 h (P = 0.000, both), as well as better muscle strength of hip flexion at 6, 12 and 24 h (P = 0.000, P = 0.000 and P = 0.025 respectively). Compared with SIFIB, CPB was associated with increased sensory block coverage at 6, 12 and 24 h (P = 0.000, P = 0.000, and P =0.022, respectively). Conclusion: CPB has a greater potential to alleviate postoperative pain and improve recovery in THA patients than SIFIB.

17.
BMC Geriatr ; 23(1): 603, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759185

RESUMO

BACKGROUNDS: Gait disorder is associated with cognitive functional impairment, and this disturbance is more pronouncedly when performing additional cognitive tasks. Our study aimed to characterize gait disorders in mild cognitive impairment (MCI) under three dual tasks and determine the association between gait performance and cognitive function. METHODS: A total of 260 participants were enrolled in this cross-sectional study and divided into MCI and cognitively normal control. Spatiotemporal and kinematic gait parameters (31 items) in single task and three dual tasks (serial 100-7, naming animals and words recall) were measured using a wearable sensor. Baseline characteristics of the two groups were balanced using propensity score matching. Important gait features were filtered using random forest method and LASSO regression and further described using logistic analysis. RESULTS: After matching, 106 participants with MCI and 106 normal controls were recruited. Top 5 gait features in random forest and 4 ~ 6 important features in LASSO regression were selected. Robust variables associating with cognitive function were temporal gait parameters. Participants with MCI exhibited decreased swing time and terminal swing, increased mid stance and variability of stride length compared with normal control. Subjects walked slower when performing an extra dual cognitive task. In the three dual tasks, words recall test exhibited more pronounced impact on gait regularity, velocity, and dual task cost than the other two cognitive tests. CONCLUSION: Gait assessment under dual task conditions, particularly in words recall test, using portable sensors could be useful as a complementary strategy for early detection of MCI.


Assuntos
Disfunção Cognitiva , Humanos , Idoso , Estudos Transversais , Disfunção Cognitiva/psicologia , Marcha , Caminhada , Cognição , Testes Neuropsicológicos
18.
Phytomedicine ; 119: 155011, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562093

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most prevalent form of dementia, remains untreatable. One of the factors that contributes to its progression is microglia-mediated inflammation. Pterostilbene, a compound isolated from Chinese dragon's blood, can reduce inflammation caused by overactive microglia. However, its effects on AD transgenic animals and the possible underlying mechanism remain unknown. METHODS: We evaluated the effect of pterostilbene on learning and memory difficulties in transgenic APP/PS1 mice. We used immunofluorescence to detect microglial activation and Aß aggregation. We explored the cellular mechanism of pterostilbene by establishing LPS- stimulated BV2 cells and oAß1-42- exposed HEK 293T cells that overexpress TLR4 and/or MD2 via lentivirus. We applied flow cytometry and immunoprecipitation to examine how pterostilbene regulates TLR4 signaling. RESULTS: Pterostilbene enhanced the learning and memory abilities of APP/PS1 mice and reduced microglial activation and Aß aggregation in their hippocampus. Pterostilbene alleviated oAß1-42-induced inflammation, which required the involvement of MD2. Pterostilbene disrupted the binding between TLR4 and MD2, which may further prevent TLR4 dimerization and subsequent inflammatory response. Moreover, pterostilbene restored the impaired endocytosis of oAß1-42 through an autophagy-dependent mechanism. CONCLUSION: This is the first demonstration that pterostilbene can potentially treat AD by blocking the interaction of TLR4 and MD2, thereby suppressing TLR4-mediated inflammation.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Receptor 4 Toll-Like/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia , Autofagia , Endocitose , Modelos Animais de Doenças
19.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446906

RESUMO

Ammonia decomposition has attracted significant attention in recent years due to its ability to produce hydrogen without emitting carbon dioxide and the ease of ammonia storage. This paper reviews the recent developments in ammonia decomposition technologies for hydrogen production, focusing on the latest advances in catalytic materials and catalyst design, as well as the research progress in the catalytic reaction mechanism. Additionally, the paper discusses the advantages and disadvantages of each method and the importance of finding non-precious metals to reduce costs and improve efficiency. Overall, this paper provides a valuable reference for further research on ammonia decomposition for hydrogen production.


Assuntos
Amônia , Metais , Catálise , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...