Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 182: 288-300, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729547

RESUMO

The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.


Assuntos
Fotoquimioterapia , Ácido Pirúvico , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Animais , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , Camundongos , Humanos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Nanopartículas/química , Nanopartículas/uso terapêutico , Camundongos Endogâmicos BALB C , Feminino , Metástase Neoplásica , Microambiente Tumoral/efeitos dos fármacos
2.
J Control Release ; 371: 16-28, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763388

RESUMO

Metastasis leads to high mortality among cancer patients. It is a complex, multi-step biological process that involves the dissemination of cancer cells from the primary tumor and their systemic spread throughout the body, primarily through the epithelial-mesenchymal transition (EMT) program and immune evasion mechanisms. It presents a challenge in how to comprehensively treat metastatic cancer cells throughout the entire stage of the metastatic cascade using a simple system. Here, we fabricate a nanogel (HNO-NG) by covalently crosslinking a macromolecular nitric oxide (NO) donor with a photothermal IR780 iodide-containing hyaluronic acid derivative via a click reaction. This enables stable storage and tumor-targeted, photothermia-triggered release of NO to combat tumor metastasis throughout all stages. Upon laser irradiation (HNO-NG+L), the surge in NO production within tumor cells impairs the NF-κB/Snail/RKIP signaling loop that promotes the EMT program through S-nitrosylation, thus inhibiting cell dissemination from the primary tumor. On the other hand, it induces immunogenic cell death (ICD) and thereby augments anti-tumor immunity, which is crucial for killing both the primary tumor and systemically distributed tumor cells. Therefore, HNO-NG+L, by fully leveraging EMT reversal, ICD induction, and the lethal effect of NO, achieved impressive eradication of the primary tumor and significant prevention of lung metastasis in a mouse model of orthotropic 4T1 breast tumor that spontaneously metastasizes to the lungs, extending the NO-based therapeutic approach against tumor metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Camundongos Endogâmicos BALB C , Nanogéis , Óxido Nítrico , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanogéis/química , Nanogéis/administração & dosagem , Feminino , Linhagem Celular Tumoral , Metástase Neoplásica/prevenção & controle , Humanos , Camundongos , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Polietilenoimina/química , Polietilenoimina/administração & dosagem , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/farmacologia , Terapia Fototérmica/métodos , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...