Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867128

RESUMO

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Assuntos
Adesivos , Vidro , Oligopeptídeos , Adesivos/química , Vidro/química , Temperatura , Vitrificação , Água/química , Oligopeptídeos/química , Tirosina/química , Luz , Raios Infravermelhos
2.
Nano Lett ; 24(7): 2257-2263, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346272

RESUMO

High quality factor optical nanostructures provide a great opportunity to enhance nonlinear optical processes such as third harmonic generation. However, the field enhancement in these high quality factor structures is typically accompanied by optical mode nonlocality. As a result, the enhancement of nonlinear processes comes at the cost of their local control as needed for nonlinear wavefront shaping, imaging, and holography. Here we show simultaneous strong enhancement and spatial control over third harmonic generation with a local high-Q metasurface relying on higher-order Mie resonant modes. Our results demonstrate third harmonic generation at an efficiency of up to 3.25 × 10-5, high quality wavefront shaping as illustrated by a third harmonic metalens, and a flatband, angle independent, third harmonic response up to ±11° incident angle. The demonstrated high level of local control and efficient frequency conversion offer promising prospects for realizing novel nonlinear optical devices.

3.
Nat Commun ; 14(1): 8476, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123546

RESUMO

The strong interaction of light with micro- and nanostructures plays a critical role in optical sensing, nonlinear optics, active optical devices, and quantum optics. However, for wavefront shaping, the required local control over light at a subwavelength scale limits this interaction, typically leading to low-quality-factor optical devices. Here, we demonstrate an avenue towards high-quality-factor wavefront shaping in two spatial dimensions based on all-dielectric higher-order Mie-resonant metasurfaces. We design and experimentally realize transmissive band stop filters, beam deflectors and high numerical aperture radial lenses with measured quality factors in the range of 202-1475 at near-infrared wavelengths. The excited optical mode and resulting wavefront control are both local, allowing versatile operation with finite apertures and oblique illumination. Our results represent an improvement in quality factor by nearly two orders of magnitude over previous localized mode designs, and provide a design approach for a new class of compact optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...