Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786592

RESUMO

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Assuntos
Osso e Ossos , Cartilagem , Colágeno , Gadiformes , Hidrolisados de Proteína , Animais , Colágeno/metabolismo , Humanos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Bebidas , Alimento Funcional , Hidrólise
2.
Mar Drugs ; 19(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436294

RESUMO

Waste from fish cutting (heads, swim bladders, fins, skin, and bones) is a high-value technological raw material for obtaining substances and products with a wide range of properties. The possibility of using waste from cutting fish of the Gadidae family: the Alaska pollock (Gadus chalcogrammus) and the Pacific cod (Gadus macrocephalus), processed in the coastal zone, is scientifically substantiated. In this work, a technology has been developed for processing accumulated waste from fish cutting in order to obtain fish gelatin, which is characterized by high protein content (more than 80.0%) and a full set of essential and nonessential amino acids. We studied the quality of fish gelatin obtained from wastes from cutting the fish of the Gadidae family. The possibility of using fish gelatin as a component of fish products is shown; the dose of its introduction into the fish products is substantiated. The data obtained made it possible to recommend the use of fish processing waste products as a gelling component and a source of amino acids in multicomponent food systems.


Assuntos
Indústria Alimentícia , Gadiformes , Gelatina/química , Resíduos , Animais , Organismos Aquáticos
3.
Mar Drugs ; 19(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436311

RESUMO

The Atlantic cod (Gadus morhua) and red king crab (Paralithodes camtschaticus) processing wastes are massive and unutilized in the Murmansk region of Russia. The samples of skin-containing waste of Atlantic cod fillets production were hydrolyzed using enzyme preparations derived from red king crab hepatopancreases, porcine pancreases, and Bacillus subtilis bacteria. The activity of enzymes from crab hepatopancreases was significantly higher than the activity of enzymes derived from other sources. The optimal conditions of the hydrolysis process have been figured out. The samples of cod processing waste hydrolysate were analyzed for amino acid composition and molecular weight distribution. The samples of hydrolysate were used as core components for bacterial culture medium samples. The efficiency of the medium samples was tested for Escherichia coli growth rate; the most efficient sample had an efficiency of 95.3% of that of a commercially available medium based on fish meal. Substitution of medium components with those derived from industrial by-products is one of the ways to decrease a cost of a culture medium in biopharmaceutical drug production.


Assuntos
Colágeno/química , Meios de Cultura/química , Gadus morhua , Animais , Organismos Aquáticos , Quitinases/química , Crustáceos/enzimologia , Hidrólise , Federação Russa
4.
Bull Environ Contam Toxicol ; 106(6): 978-982, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34021770

RESUMO

Juvenile common carp were treated with Cd2+ at a sublethal concentration for Cyprinidae (6.4 mg/L). The expression of N-methyl-D-aspartate receptor subunit genes (NR2A, NR2B) and ATP-binding cassette subfamily C member 1 gene (ABCC1) was compared between treated and untreated fish. In addition, cadmium accumulation in the fish tissues was assessed. NR2A was 18.9-fold upregulated by Cd2+ in the eyes (choroid + retina), which accumulated Cd, and was not upregulated in brain, which didn't accumulate Cd. This may have been caused by the blocking of calcium channels by Cd2+, which has a very similar ionic radius to that of Ca2+. ABCC1 was 2.6-fold upregulated in gills and was not upregulated in liver; both tissues accumulated high levels of Cd. This difference may have been caused by the accumulation of predominantly previously inactivated Cd in liver or by some difference in the mechanisms of self-detoxification from Cd2+ in fish gills and liver.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Cádmio/toxicidade , Carpas/genética , Brânquias/metabolismo , Fígado/metabolismo , Distribuição Tecidual , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
5.
Am J Physiol Heart Circ Physiol ; 300(6): H1997-2004, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21460199

RESUMO

End-stage kidney disease is a terminal stage of chronic kidney disease, which is associated with a high incidence of cardiovascular disease. Cardiovascular disease frequently results from endothelial injury caused by carbamylated LDL (cLDL), the product of LDL modification by urea-derived cyanate. Our previous data suggested that cLDL induces mitogen-activated protein kinase-dependent mitotic DNA fragmentation and cell death. However, the mechanism of this pathway is unknown. The current study demonstrated that cLDL-induced endothelial mitotic cell death is independent of caspase-3. The expression of endonuclease G (EndoG), the nuclease implicated in caspase-independent DNA fragmentation, was significantly increased in response to cLDL exposure to the cells. The inhibition of EndoG by RNAi protected cLDL-induced DNA fragmentation, whereas the overexpression of EndoG induced more DNA fragmentation in endothelial cells. Ex vivo experiments with primary endothelial cells isolated from wild-type (WT) and EndoG knockout (KO) mice demonstrated that EndoG KO cells are partially protected against cLDL toxicity compared with WT cells. To determine cLDL toxicity in vivo, we administered cLDL or native LDL (nLDL) intravenously to the WT and EndoG KO mice and then measured floating endothelial cells in blood using flow cytometry. The results showed an increased number of floating endothelial cells after cLDL versus nLDL injection in WT mice but not in EndoG KO mice. Finally, the inhibitors of MEK-ERK1/2 and JNK-c-jun pathways decreased cLDL-induced EndoG overexpression and DNA fragmentation. In summary, our data suggest that cLDL-induced endothelial toxicity is caspase independent and results from EndoG-dependent DNA fragmentation.


Assuntos
Apoptose/efeitos dos fármacos , Vasos Coronários/patologia , Endodesoxirribonucleases/fisiologia , Endotélio Vascular/patologia , Lipoproteínas LDL/farmacologia , Animais , Apoptose/fisiologia , Células Cultivadas , Vasos Coronários/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Endodesoxirribonucleases/genética , Endotélio Vascular/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/fisiologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Modelos Animais , Transdução de Sinais/fisiologia
6.
J Biomed Opt ; 13(3): 031208, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18601532

RESUMO

Corticotropin releasing hormone receptor (CRHR) and the VT2 arginine vasotocin receptor (VT2R) are vital links in the hypothalamic-pituitary-adrenal axis that enable a biological response to stressful stimuli in avian species. CRHR and VT2R are both G-protein coupled receptors (GPCRs), and have been shown by us to form a heterodimer via fluorescent resonance energy transfer (FRET) analysis in the presence of their respective ligands, corticotrophin releasing hormone (CRH) and arginine vasotocin (AVT). The dimerization interface of the heterodimer is unknown, but computational analyses predict transmembrane domains (TMs) as likely sites of the interaction. We constructed chimerical VT2Rs, tagged at the C-terminal ends with either cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP), by replacing the fourth transmembrane region (TM4) of VT2R with TM4 of the beta2-adrenergic receptor (beta2AR). The VT2R/beta2AR chimeras were expressed in HeLa cells and proper trafficking is confirmed by observing cell membrane localization using confocal microscopy. VT2R/beta2AR-YFP chimera functionality was confirmed with a Fura-2 acetoxymethyl ester (Fura-2AM) assay. FRET analysis was then performed on VT2/beta2AR-chimera/CRHR pairs, and the calculated distance was observed to be >10 nm apart, indicating that heterodimerization was partly disrupted by mutating TM4 of the VT2R. Therefore, TM4 may form one region of the possible dimerization interfaces between the VT2R and CRHR.


Assuntos
Membrana Celular/metabolismo , Galinhas/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Vasopressinas/química , Receptores de Vasopressinas/metabolismo , Animais , Membrana Celular/química , Dimerização , Células HeLa , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
7.
Mol Endocrinol ; 21(9): 2178-88, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17536010

RESUMO

In birds, ACTH release from the anterior pituitary gland during stress is controlled by CRH and arginine vasotocin (AVT). Using 5-wk-old male chicks, simultaneous iv injections of CRH and AVT were found to result in a greater than additive increase in plasma corticosterone levels compared with that obtained with individual administration of either peptide hormone. In order to investigate molecular mechanisms underlying this observation, the chicken CRH receptor (CRHR) and vasotocin VT2 receptor (VT2R) were fused to cyan and yellow fluorescent proteins and expressed in HeLa cells. The resulting CRHR and VT2R fusion proteins were expressed appropriately in the plasma membrane and were found to couple to downstream signal transduction pathways. Quantitative fluorescence resonance energy transfer (FRET) analysis was used to determine whether the CRHR and VT2R formed heterodimers. In the absence of CRH and AVT, the FRET efficiency was 15-18%, and the distance between receptors was 5-6 nm. Treatment of the cells that expressed both cyan fluorescent protein-CRHR and yellow fluorescent protein-VT2R with CRH or AVT alone did not lead to a significant change in the FRET efficiency. However, simultaneous addition of these hormones increased the efficiency of the FRET signal and decreased the distance between the two receptors. In HeLa cells expressing both CRHR and VT2R, treatment with CRH and AVT resulted in a significant increase in cAMP production over that with CRH alone, indicating that heterodimer formation may enhance the ability of the CRHR to activate downstream signal transduction.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , AMP Cíclico/biossíntese , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Galinhas/metabolismo , Dimerização , Feminino , Células HeLa , Humanos , Masculino , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Vasopressinas/química
8.
J Am Soc Nephrol ; 13(4): 1000-1007, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11912259

RESUMO

Ischemia/reperfusion is known to result in DNA fragmentation and cell death in kidney tubular epithelium, but the endonucleases responsible for this DNA damage have not been identified. DNA substrate gel analysis of extracts from normal rat kidney cortex revealed the presence of a DNase with an apparent molecular mass of 30 to 34 kD. This enzyme is not a dimer of the previously described nuclear 15-kD endonuclease in kidney cells. Partially purified DNase exhibited characteristics similar to those of rat DNase I. The DNase was able to digest circular DNA (endonuclease), required both Ca(2+) and Mg(2+) ions, and was inhibited by Zn(2+) and by aurintricarboxylic acid; it was not inhibited by G-actin. Rat kidneys were subjected to 40 min of ischemia, followed by 0, 1, 4, 16, or 48 h of reperfusion. The activity of the DNase in cytosolic and nuclear extracts, the 200-bp ladder-generating activity, and 3'OH strand breaks in nuclear DNA were simultaneously increased after ischemia, during the first hours of reperfusion. Oxidative DNA damage, measured as 8-hydroxydeoxyguanosine content, did not coincide with endonuclease-generated DNA breaks. Oxidative DNA damage was increased during ischemia and gradually decreased during reperfusion. Phosphorothioated DNase I antisense oligodeoxynucleotide introduced into cultured NRK-52E rat kidney epithelial cells inhibited DNA fragmentation and attenuated cell death induced by hypoxia/reoxygenation in vitro. The data indicate that the DNase I-like endonuclease may contribute to DNA fragmentation in reperfused rat kidneys.


Assuntos
Desoxirribonuclease I/metabolismo , Isquemia/enzimologia , Córtex Renal/enzimologia , Circulação Renal , Traumatismo por Reperfusão/enzimologia , Animais , Fragmentação do DNA , Desoxirribonuclease I/química , Ativação Enzimática , Isquemia/genética , Masculino , Peso Molecular , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética
9.
Kidney Int ; 61(3): 1003-10, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11849455

RESUMO

BACKGROUND: Our prior data indicate that two separate but homologous basolateral chloride (Cl-) channels, mmClC-Ka and mcClC-Ka, are the principal mediators of net Cl- absorption in mouse medullary thick ascending limb (MTAL) and cortical thick ascending limb (CTAL) cells, respectively. In the present studies, we evaluated the possibility that there might be translational or post-translational suppression of mmClC-Ka and mcClC-Ka activity in CTAL and MTAL cells, respectively. METHODS: Polymerase chain reaction (PCR) fragments were prepared that were highly specific for either mmClC-Ka or mcClC-Ka, the cDNAs encoding mmClC-Ka and mcClC-Ka, respectively. RESULTS: Using reverse transcription (RT)-PCR with these highly specific products, mRNAs specific for non-homologous channel sequences in either mmClC-Ka or mcClC-Ka were present in both MTAL and CTAL cells. CONCLUSIONS: Both mouse MTAL and CTAL cells contain the mRNAs encoding mmClC-Ka and mcClC-Ka. There may be translational or post-translational suppression of mmClC-Ka activity in CTAL cells, and of mcClC-Ka activity in MTAL cells.


Assuntos
Canais de Cloreto/metabolismo , Alça do Néfron/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Córtex Renal , Medula Renal , Alça do Néfron/citologia , Membranas/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...