Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Anticancer Res ; 44(10): 4219-4224, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39349000

RESUMO

BACKGROUND/AIM: SN-38, an active metabolite of irinotecan, exhibits toxicity to all proliferating cells, causing dose-limiting and potentially life-threatening side effects. Newly established water-soluble derivatives of SN-38, 7-ethyl-9-(N-morpholinyl)methyl-10-hydroxycamptothecin (BN-MOA) and 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (BN-NMe), exhibit a unique mechanism of spontaneous alkylation of aromatic bases in DNA and show greater in vitro activity on cancer cell lines than SN-38. The aim of this study was to compare the therapeutic responses to irinotecan, BN-MOA and BN-NMe in vivo and in vitro in 3D cultures using colorectal cancer (CRC) patient derived xenografts (PDX). MATERIALS AND METHODS: Seven established PDX tissues were subcutaneously grown on the flanks of NSG or NSG-SGM3 mice and tumor diameters were measured with a caliper. Compounds were administrated intraperitoneally at 40 mg/kg every five days. 3D PDX cultures were performed on 96-well LifeGel plates and cell viability was determined with the CellTiter Glo 3D reagent. RESULTS: Treatment with irinotecan significantly delayed or stopped the growth of 5 out of 7 PDXs, with a greater level of inhibition from BN-MOA compared to irinotecan and BN-NMe. In vitro studies exhibited the same trends in SN-38 and BN-NMe but not in BN-MOA. CONCLUSION: The new SN-38 derivatives, BN-MOA and BN-NMe, showed enhanced therapeutic effects compared to irinotecan in CRC models. BN-MOA demonstrated superior tumor inhibition in vivo, while BN-NMe had similar in vitro activity to SN-38. These findings highlight the potential of BN-MOA for greater antitumor efficacy in vivo, with BN-NMe showing comparable effectiveness to SN-38 in vitro. Future studies should optimize growth models to better predict anticancer drug responses.


Assuntos
Camptotecina , Neoplasias Colorretais , Irinotecano , Ensaios Antitumorais Modelo de Xenoenxerto , Irinotecano/farmacologia , Animais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Camundongos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos
2.
Biomedicines ; 12(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200366

RESUMO

The gut microbiome, crucial to human health, changes with age and disease, and influences metabolic profiles. Gut bacteria produce short-chain fatty acids (SCFAs), essential for maintaining homeostasis and modulating inflammation. Dysbiosis, commonly due to poor diet or lifestyle, disrupts the integrity of the intestinal barrier and may contribute to conditions such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Analytical methods such as gas chromatography-mass spectrometry (GC/MS) are vital for SCFA analysis, with various preparation and storage techniques improving the accuracy. Advances in these methods have improved the reliability and sensitivity of SCFA quantification, which is crucial for the identification of disease biomarkers. Evidence from GC/MS-based studies has revealed that accurate SCFA quantification requires meticulous sample preparation and handling. The process begins with the extraction of SCFAs from biological samples using methods such as direct solvent extraction or solid-phase microextraction (SPME), both of which require optimization for maximum recovery. Derivatization, which chemically modifies SCFAs to enhance volatility and detectability, is a crucial step, typically involving esterification or silylation. Following this, the cleanup process removes impurities that might interfere with the analysis. Although recent advances in GC/MS technology have significantly improved SCFA-detection sensitivity and specificity, proper sample storage, with acid preservatives and the avoidance of repeated thawing, is essential for maintaining SCFA integrity.

3.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125593

RESUMO

The key association between gut dysbiosis and cancer is already known. Here, we used whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS) to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer, breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML), respectively, and compared the data with those from sex- and age-matched healthy controls (HC). α-diversity differed only between the lymphoid neoplasm and AML groups and their respective HC, while ß-diversity differed between all groups and their HC. Of 203 unique species, 179 and 24 were under- and over-represented, respectively, in the case groups compared with HC. Of these, Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes hadrus was under-represented in all but the stomach cancer group, and 22 species were under-represented in the remaining five case groups. There was a marked reduction in the gut microbiome cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino acids tested, the relative concentration of formic acid was significantly higher in each of the case groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic acid. We found more differences than similarities between the studied malignancy groups, with large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While the results obtained may demonstrate trends rather than objective differences that correlate with different types of malignancy, the newly developed gut microbiota cancer index did distinguish most of the cancer cases from HC. We believe that these data are a promising step forward in the search for new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.


Assuntos
Fezes , Formiatos , Microbioma Gastrointestinal , Humanos , Feminino , Fezes/microbiologia , Masculino , Formiatos/metabolismo , Pessoa de Meia-Idade , Idoso , Neoplasias/metabolismo , Neoplasias/microbiologia , Adulto , Disbiose/microbiologia , Metabolômica/métodos , Metaboloma , Cromatografia Gasosa-Espectrometria de Massas , Metagenômica/métodos
4.
Biochim Biophys Acta Gen Subj ; 1868(10): 130671, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032853

RESUMO

The skin is a complex organ, and the intricate network between keratinocytes and immune cells is critical for ensuring skin function. Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) is a ribonuclease that functions as a key negative modulator of inflammation. We previously reported that conditional deletion of MCPIP1 in keratinocytes (Mcpip1EKO) impairs skin integrity in adult mice. A similar phenotype was observed following the depletion of MCPIP1 in the myeloid compartment (Mcpip1MKO). The aim of this study was to develop a keratinocyte and myeloid double-MCPIP1 knockout mouse model to clarify the specific roles of myeloid and epidermal MCPIP1 in skin biology. Histological analyses indicated that the skin morphology changed after depletion of MCPIP1 in cells of myeloid origin as well as in keratinocytes. The thicknesses of the epidermal and subcutaneous fat layers increased in the mice with a loss of epidermal MCPIP1, whereas the loss of myeloid MCPIP1 had the opposite effect. In addition, both types of mice showed opposite responses to stimulation with 12-O-tetradecanoylphorbol-13-acetate. Transcriptomic profiling of whole-skin lysates revealed some common target transcripts in all the knockout mice. Further analyses revealed that distinct pathways are modulated following the loss of epidermal or myeloid MCPIP1. The skin morphology and inflammatory phenotype of keratinocyte and myeloid double-MCPIP1 knockout mice resembled those of mice with only keratinocyte-specific knockout of MCPIP1. Overall, myeloid and epidermal MCPIP1 play important but distinct roles in the modulation of skin-related processes.


Assuntos
Homeostase , Queratinócitos , Camundongos Knockout , Células Mieloides , Ribonucleases , Pele , Animais , Queratinócitos/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Camundongos , Pele/metabolismo , Pele/patologia , Células Mieloides/metabolismo , Epiderme/metabolismo , Epiderme/patologia , Camundongos Endogâmicos C57BL
5.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786089

RESUMO

Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFßR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFß1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA2 , Quinase 1 do Ponto de Checagem , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , Neoplasias Ovarianas , Ftalazinas , Piperazinas , RNA Mensageiro , Humanos , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Nutrients ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612951

RESUMO

BACKGROUND: The study investigated the impact of starch degradation products (SDexF) as prebiotics on obesity management in mice and overweight/obese children. METHODS: A total of 48 mice on a normal diet (ND) and 48 on a Western diet (WD) were divided into subgroups with or without 5% SDexF supplementation for 28 weeks. In a human study, 100 overweight/obese children were randomly assigned to prebiotic and control groups, consuming fruit and vegetable mousse with or without 10 g of SDexF for 24 weeks. Stool samples were analyzed for microbiota using 16S rRNA gene sequencing, and short-chain fatty acids (SCFA) and amino acids (AA) were assessed. RESULTS: Results showed SDexF slowed weight gain in female mice on both diets but only temporarily in males. It altered bacterial diversity and specific taxa abundances in mouse feces. In humans, SDexF did not influence weight loss or gut microbiota composition, showing minimal changes in individual taxa. The anti-obesity effect observed in mice with WD-induced obesity was not replicated in children undergoing a weight-loss program. CONCLUSIONS: SDexF exhibited sex-specific effects in mice but did not impact weight loss or microbiota composition in overweight/obese children.


Assuntos
Obesidade Infantil , Solanum tuberosum , Criança , Humanos , Masculino , Feminino , Animais , Camundongos , Dextrinas , Dieta Ocidental , Disbiose , Sobrepeso , RNA Ribossômico 16S/genética , Peso Corporal , Amido/farmacologia , Frutas
7.
Front Oncol ; 14: 1279132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327745

RESUMO

Background: Possible relationships between gut dysbiosis and breast cancer (BC) development and progression have been previously reported. However, the results of these metagenomics studies are inconsistent. Our study involved 88 patients diagnosed with breast cancer and 86 cancer-free control women. Participants were divided into groups based on their menopausal status. Fecal samples were collected from 47 and 41 pre- and postmenopausal newly diagnosed breast cancer patients and 51 and 35 pre- and postmenopausal controls, respectively. In this study, we performed shotgun metagenomic analyses to compare the gut microbial community between pre- and postmenopausal BC patients and the corresponding controls. Results: Firstly, we identified 12, 64, 158, and 455 bacterial taxa on the taxonomy level of phyla, families, genera, and species, respectively. Insignificant differences of the Shannon index and ß-diversity were found at the genus and species levels between pre- and postmenopausal controls; the differences concerned only the Chao index at the species level. No differences in α-diversity indexes were found between pre- and postmenopausal BC patients, although ß-diversity differed these subgroups at the genus and species levels. Consistently, only the abundance of single taxa differed between pre- and postmenopausal controls and cases, while the abundances of 14 and 23 taxa differed or tended to differ between premenopausal cases and controls, and between postmenopausal cases and controls, respectively. There were similar differences in the distribution of enterotypes. Of 460 bacterial MetaCyc pathways discovered, no pathways differentiated pre- and postmenopausal controls or BC patients, while two and one pathways differentiated cases from controls in the pre- and postmenopausal subgroups, respectively. Conclusion: While our findings did not reveal an association of changes in the overall microbiota composition and selected taxa with the menopausal status in cases and controls, they confirmed differences of the gut microbiota between pre- and postmenopausal BC patients and the corresponding controls. However, these differences were less extensive than those described previously.

8.
Am J Hematol ; 99(4): 543-554, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38293789

RESUMO

BMP6 is an iron-sensing cytokine whose transcription in liver sinusoidal endothelial cells (LSECs) is enhanced by high iron levels, a step that precedes the induction of the iron-regulatory hormone hepcidin. While several reports suggested a cell-autonomous induction of Bmp6 by iron-triggered signals, likely via sensing of oxidative stress by the transcription factor NRF2, other studies proposed the dominant role of a paracrine yet unidentified signal released by iron-loaded hepatocytes. To further explore the mechanisms of Bmp6 transcriptional regulation, we used female mice aged 10-11 months, which are characterized by hepatocytic but not LSEC iron accumulation, and no evidence of systemic iron overload. We found that LSECs of aged mice exhibit increased Bmp6 mRNA levels as compared to young controls, but do not show a transcriptional signature characteristic of activated NFR2-mediated signaling in FACS-sorted LSECs. We further observed that primary murine LSECs derived from both wild-type and NRF2 knock-out mice induce Bmp6 expression in response to iron exposure. By analyzing transcriptomic data of FACS-sorted LSECs from aged versus young mice, as well as early after iron citrate injections, we identified ETS1 as a candidate transcription factor involved in Bmp6 transcriptional regulation. By performing siRNA-mediated knockdown, small-molecule treatments, and chromatin immunoprecipitation in primary LSECs, we show that Bmp6 transcription is regulated by iron via ETS1 and p38/JNK MAP kinase-mediated signaling, at least in part independently of NRF2. Thereby, these findings identify the new components of LSEC iron sensing machinery broadly associated with cellular stress responses.


Assuntos
Células Endoteliais , Ferro , Feminino , Camundongos , Animais , Ferro/metabolismo , Células Endoteliais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepcidinas/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Knockout , Proteína Morfogenética Óssea 6/genética
9.
Dermatol Ther (Heidelb) ; 14(2): 409-420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183615

RESUMO

INTRODUCTIONS: Hidradenitis suppurativa (HS) is a chronic inflammatory condition of the skin. Both genetic and environmental factors contribute to the risk of developing HS, but the pathogenesis of this disease is currently not fully understood. The aim of this study was to further current understanding of the molecular background of HS with the use of global transcriptome analyses. METHODS: Transcriptome profiling of perilesional and lesional skin of five patients with HS and six healthy control patients was performed by next-generation sequencing. Groups of differentially expressed genes characteristic of the skin of patients with HS were shortlisted by bioinformatic analysis. RESULTS: RNA sequencing followed by bioinformatic profiling revealed profound enrichment of inflammatory-related processes in both lesional and perilesional skin of patients with HS. There were, however, distinct differences in the gene expression profiles between the lesional and perilesional skin, with 1488 genes differentially expressed. Genes encoding typical proinflammatory cytokines were profoundly enriched within HS lesions. In contrast, those encoding mediators of extracellular matrix organization were highly expressed mostly in the perilesional area. CONCLUSIONS: Our study provides novel insights into the mechanisms underlying the pathogenesis of HS, and the results also have potential clinical implications in both diagnosis and therapeutics.

10.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279352

RESUMO

Specifying the role of genetic mutations in cancer development is crucial for effective screening or targeted treatments for people with hereditary cancer predispositions. Our goal here is to find the relationship between a number of cancerogenic mutations and the probability of cancer induction over the lifetime of cancer patients. We believe that the Avrami-Dobrzynski biophysical model can be used to describe this mechanism. Therefore, clinical data from breast and ovarian cancer patients were used to validate this model of cancer induction, which is based on a purely physical concept of the phase-transition process with an analogy to the neoplastic transformation. The obtained values of model parameters established using clinical data confirm the hypothesis that the carcinogenic process strongly follows fractal dynamics. We found that the model's theoretical prediction and population clinical data slightly differed for patients with the age below 30 years old, and that might point to the existence of an ancillary protection mechanism against cancer development. Additionally, we reveal that the existing clinical data predict breast or ovarian cancers onset two years earlier for patients with BRCA1/2 mutations.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/epidemiologia , Mutação , Predisposição Genética para Doença , Neoplasias da Mama/genética
12.
Sci Rep ; 13(1): 16944, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805647

RESUMO

Monocyte chemoattractant protein-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase that has been described as a key negative modulator of inflammation. MCPIP1 also controls numerous tumor-related processes, such as proliferation, apoptosis and differentiation. In this study, we utilized a zebrafish model to investigate the role of Mcpip1 during embryogenic development. Our results demonstrated that during embryogenesis, the expression of the zc3h12a gene encoding Mcpip1 undergoes dynamic changes. Its transcript levels gradually increase from the 2-cell stage to the spherical stage and then decrease rapidly. We further found that ectopic overexpression of wild-type Mcpip1 but not the catalytically inactive mutant form resulted in an embryonic lethal phenotype in zebrafish embryos (24 hpf). At the molecular level, transcriptomic profiling revealed extensive changes in the expression of genes encoding proteins important in the endoplasmic reticulum stress response and in protein folding as well as involved in the formation of primary germ layer, mesendoderm and endoderm development, heart morphogenesis and cell migration. Altogether, our results demonstrate that the expression of zc3h12a must be tightly controlled during the first cell divisions of zebrafish embryos and that a rapid decrease in its mRNA expression is an important factor promoting proper embryo development.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Quimioatraentes de Monócitos , Diferenciação Celular , Ribonucleases/genética , Ribonucleases/metabolismo , Desenvolvimento Embrionário/genética
13.
BMC Genomics ; 24(1): 446, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553584

RESUMO

BACKGROUND: Disease molecular complexity requires high throughput workflows to map disease pathways through analysis of vast tissue repositories. Great progress has been made in tissue multiomics analytical technologies. To match the high throughput of these advanced analytical platforms, we have previously developed a multipurpose 96-well microplate sonicator, PIXUL, that can be used in multiple workflows to extract analytes from cultured cells and tissue fragments for various downstream molecular assays. And yet, the sample preparation devices, such as PIXUL, along with the downstream multiomics analytical capabilities have not been fully exploited to interrogate tissues because storing and sampling of such biospecimens remain, in comparison, inefficient. RESULTS: To mitigate this tissue interrogation bottleneck, we have developed a low-cost user-friendly system, CryoGrid, to catalog, cryostore and sample tissue fragments. TRIzol is widely used to isolate RNA but it is labor-intensive, hazardous, requires fume-hoods, and is an expensive reagent. Columns are also commonly used to extract RNA but they involve many steps, are prone to human errors, and are also expensive. Both TRIzol and column protocols use test tubes. We developed a microplate PIXUL-based TRIzol-free and column-free RNA isolation protocol that uses a buffer containing proteinase K (PK buffer). We have integrated the CryoGrid system with PIXUL-based PK buffer, TRIzol, and PureLink column methods to isolate RNA for gene-specific qPCR and genome-wide transcript analyses. CryoGrid-PIXUL, when integrated with either PK buffer, TRIzol or PureLink column RNA isolation protocols, yielded similar transcript profiles in frozen organs (brain, heart, kidney and liver) from a mouse model of sepsis. CONCLUSIONS: RNA isolation using the CryoGrid-PIXUL system combined with the 96-well microplate PK buffer method offers an inexpensive user-friendly high throughput workflow to study transcriptional responses in tissues in health and disease as well as in therapeutic interventions.


Assuntos
Fenóis , RNA , Animais , Camundongos , Humanos , Células Cultivadas , Manejo de Espécimes
14.
Front Cell Infect Microbiol ; 13: 1190910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577378

RESUMO

Introduction: Low diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis. Results: The study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients. Conclusion: Our data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Doenças Inflamatórias Intestinais , Neoplasias , Humanos , Clostridioides difficile/genética , Disbiose/complicações , Disbiose/microbiologia , Infecções por Clostridium/microbiologia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Diarreia/microbiologia , Bactérias/genética , Butiratos , Neoplasias/complicações
15.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719185

RESUMO

Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10- to 11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.


Assuntos
Ferro , Fagocitose , Feminino , Animais , Camundongos , Ferro/metabolismo , Fagocitose/fisiologia , Agregados Proteicos , Eritrócitos/fisiologia , Hemólise , Envelhecimento , Mamíferos/metabolismo
16.
Wiad Lek ; 76(12): 2543-2555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38290016

RESUMO

Marie Sklodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families. Examples of ongoing international collaborations in the above areas were discussed. Participation of the representatives of the Warsaw-based Medical Research Agency, National Cancer Institute (NCI) of the United States, National Cancer Research Institutes of Poland and Lithuania, New York State Empire State Development, Ministry of Health of Ukraine and Translational Research Cancer Center Consortium of 13 cancer centers from the US and Canada, facilitated the discussion of available governmental and non-governmental funding initiatives in the above areas.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Estados Unidos , New York , Qualidade de Vida , Neoplasias/terapia , Polônia
17.
Front Oncol ; 12: 1048741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387080

RESUMO

Background: TRAIL (TNF-related apoptosis inducing ligand) exhibits selective proapoptotic activity in multiple tumor types, while sparing normal cells. This selectivity makes TRAIL an attractive therapeutic candidate. However, despite encouraging activity in preclinical models, clinical trials with TRAIL mimetics/death receptor agonists demonstrated insufficient activity, largely due to emerging resistance to these agents. Herein, we investigated the cytotoxic activity of a novel, TRAIL-based chimeric protein AD-O51.4 combining TRAIL and VEGFA-derived peptide sequences, in hematological malignancies. We characterize key molecular mechanisms leading to resistance and propose rational pharmacological combinations sensitizing cells to AD-O51.4. Methods: Sensitivity of DLBCL, classical Hodgkin lymphoma, (cHL), Burkitt lymphoma (BL) and acute myeloid leukemia (AML) to AD-O51.4 was assessed in vitro with MTS assay and apoptosis tests (Annexin V/PI staining). Markers of apoptosis were assessed using immunoblotting, flow cytometry or fluorogenic caspase cleavage assays. Resistant cell lines were obtained by incubation with increasing doses of AD-O51.4. Transcriptomic analyses were performed by RNA sequencing. Sensitizing effects of selected pathway modulators (BCL2, dynamin and HDAC inhibitors) were assessed using MTS/apoptosis assays. Results: AD-O51.4 exhibited low-nanomolar cytotoxic activity in DLBCL cells, but not in other lymphoid or AML cell lines. AD-O51.4 induced death-receptor (DR) mediated, caspase-dependent apoptosis in sensitive DLBCL cells, but not in primary resistant cells. The presence of DRs and caspase 8 in cancer cells was crucial for AD-O51.4-induced apoptosis. To understand the potential mechanisms of resistance in an unbiased way, we engineered AD-O51.4-resistant cells and evaluated resistance-associated transcriptomic changes. Resistant cells exhibited changes in the expression of multiple genes and pathways associated with apoptosis, endocytosis and HDAC-dependent epigenetic reprogramming, suggesting potential therapeutic strategies of sensitization to AD-O51.4. In subsequent analyses, we demonstrated that HDAC inhibitors, BCL2 inhibitors and endocytosis/dynamin inhibitors sensitized primary resistant DLBCL cells to AD-O51.4. Conclusions: Taken together, we identified rational pharmacologic strategies sensitizing cells to AD-O51.4, including BCL2, histone deacetylase inhibitors and dynamin modulators. Since AD-O51.4 exhibits favorable pharmacokinetics and an acceptable safety profile, its further clinical development is warranted. Identification of resistance mechanisms in a clinical setting might indicate a personalized pharmacological approach to override the resistance.

18.
Am J Cancer Res ; 12(10): 4751-4763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381331

RESUMO

Bromodomain Adjacent to Zinc Finger Domain 1B (BAZ1B) is involved in multiple nuclear processes, and its role in tumorigenesis is emerging. However, the function of BAZ1B in colorectal cancer (CRC) remains largely unexplored. High-density tissue microarrays comprising 100 pairs of matched normal colon and treatment-naïve CRC samples were analyzed by immunohistochemistry with an anti-BAZ1B antibody. The HCT116 and SW480 CRC cell lines were used for overexpression and small hairpin RNA-mediated BAZ1B knockdown models, respectively. Both cell lines were xenografted to immunodeficient NU/J mice to assess tumor burden. The molecular consequences of alterations of BAZ1B expression were assessed by RNA-Seq of xenografts and functional analyses using the Reactome database. Immunohistochemical analysis of BAZ1B showed that BAZ1B staining intensity was higher in 93 tumor specimens and significantly correlated with tumor size (P = 0.03), but not with the presence of KRAS mutation. BAZ1B overexpression significantly increased and its knockdown inhibited the proliferation of HCT116 and SW480 cell lines, respectively. These findings were reproduced when both cell lines were grown as xenografts. RNA-Seq of HCT116 and SW480 xenografts identified 2046 and 99 differentially expressed genes (DEGs) (adjusted P ≤ 0.05), respectively. Functional annotation of DEGs identified already established as well as new molecular processes dependent on BAZ1B protein expression. In conclusion, BAZ1B is overexpressed in CRC tissue and contributes to CRC cell proliferation in vitro and in vivo. The data support the emerging oncogenic role of BAZ1B in cancerogenesis including in CRC.

19.
Cell Rep ; 40(13): 111428, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170818

RESUMO

Proteasome machinery is a major proteostasis control system in human cells, actively compensated upon its inhibition. To understand this compensation, we compared global protein landscapes upon the proteasome inhibition with carfilzomib, in normal fibroblasts, cells of multiple myeloma, and cancers of lung, colon, and pancreas. Molecular chaperones, autophagy, and endocytosis-related proteins are the most prominent vulnerabilities in combination with carfilzomib, while targeting of the HSP70 family chaperones HSPA1A/B most specifically sensitizes cancer cells to the proteasome inhibition. This suggests a central role of HSP70 in the suppression of the proteasome downregulation, allowing to identify pathways impinging on HSP70 upon the proteasome inhibition. HSPA1A/B indeed controls proteasome-inhibition-induced autophagy, unfolded protein response, and endocytic flux, and directly chaperones the proteasome machinery. However, it does not control the NRF1/2-driven proteasome subunit transcriptional bounce-back. Consequently, targeting of NRF1 proves effective in decreasing the viability of cancer cells with the inhibited proteasome and HSP70.


Assuntos
Proteínas de Choque Térmico HSP70 , Neoplasias , Complexo de Endopeptidases do Proteassoma , Humanos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/genética , Fator 1 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteostase
20.
Int J Immunogenet ; 49(5): 353-363, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36036752

RESUMO

Several single nucleotide polymorphisms (SNPs) associated with susceptibility to Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL) have been identified. The aim of this study was to identify susceptibility loci for HL and DLBCL in Polish patients. Altogether, DLBCL (n = 218 and HL patients (n = 224) and healthy individuals (n = 1181) were recruited. Lymphoma diagnosis was based on standard criteria. Genome-wide association study (GWAS) was performed using pooled-DNA samples on llumina Infinium Omni2.5 Exome-8 v1.3, and selected loci were replicated by TaqMan SNP genotyping of individuals. GWAS detected thirteen and seven SNPs associated with DLBCL and HL, respectively. In the replication study, six and seven SNPs reached significance after correction for multiple testing in the DLBCL and HL cohorts, respectively. One and four SNPs associated with DLBCL and HL, respectively, were localized within, and two SNPs-near the major histocompatibility complex (MHC) region. In conclusion, the majority of loci associated with HL and DLBCL aetiology in previous studies have potential roles in immune function. Our pooled-DNA GWAS enabled the identification of several susceptibility loci for DLBCL and HL in the Polish population; some of them were mapped within or adjacent to the MHC, and other associated SNPs were located outside the MHC.


Assuntos
Estudo de Associação Genômica Ampla , Linfoma , DNA , Predisposição Genética para Doença , Humanos , Linfoma/genética , Polônia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...