Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771855

RESUMO

Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.


Assuntos
Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Itália , Feminino , Cruzamento , Genótipo , Fenótipo
2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256054

RESUMO

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.


Assuntos
Caveolina 1 , Caveolina 3 , Adulto , Animais , Cricetinae , Humanos , Caveolina 1/genética , Caveolina 3/genética , Cricetulus , Mutação , Células CHO , Canais Iônicos
3.
Epilepsia ; 64(12): e222-e228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746765

RESUMO

Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.


Assuntos
Dieta Cetogênica , Epilepsia Generalizada , Humanos , Ratos , Animais , Canais de Potássio/genética , Canais de Potássio/metabolismo , Células HEK293 , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Epilepsia Generalizada/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos
4.
Anim Genet ; 54(5): 643-646, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37345275

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common cardiomyopathy in domestic cats, and some inherited variants are available for genetic testing. A variant of the Alstrom syndrome protein 1 gene (ALMS1) was recently reported to be associated with HCM in the Sphynx cat breed (A3: g.92439157G>C). Genetic screening of the variant, promoted by the Osservatorio Veterinario Italiano Cardiopatie and Genefast Laboratory, was offered to Sphynx cat owners and breeders in Italy. Genotype data were initially obtained by Sanger sequencing. In one case where the samples of a trio were available, inconsistency in the vertical transmission of the variant suggested an allele dropout (ADO) of the wt allele. A new external primer pair was designed as an alternative to the original. The larger PCR product obtained was sanger sequenced, and five novel single nucleotide variants (SNVs) not yet annotated in open-access databases were detected. Three of these SNVs were within the original primer-binding regions and were assumed to have caused ADO. The haplotype, including the ADO SNVs, was detected in two cats belonging to different lineages. To accurately genotype ALMS1 g.92439157G>C in the samples, we set up a real-time TaqMan MGB assay while avoiding all surrounding SNVs. At g.92439157G>C, for 136 Sphynx cats, g.92439157 C variant was highly widespread (freq. >0.50). The present study reports five new variants surrounding ALMS1 g.92439157G>C that must be considered when designing the test. The study also indicates the need to verify the correspondence between the g.92439157 C variant frequency and the prevalence of HCM by increasing clinical visits and follow-ups and finally to promote genetic counselling for accurate management of mating plans in Italian Sphynx cats.


Assuntos
Cardiomiopatia Hipertrófica , Doenças do Gato , Gatos/genética , Animais , Alelos , Cardiomiopatia Hipertrófica/genética , Genótipo , Sequência de Bases , Itália , Doenças do Gato/genética
5.
Prog Biophys Mol Biol ; 166: 189-204, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400215

RESUMO

Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais de Potássio , Coração , Frequência Cardíaca , Humanos , Neurônios
6.
Pflugers Arch ; 473(7): 1009-1021, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934225

RESUMO

Properties of the funny current (If) have been studied in several animal and cellular models, but so far little is known concerning its properties in human pacemaker cells. This work provides a detailed characterization of If in human-induced pluripotent stem cell (iPSC)-derived pacemaker cardiomyocytes (pCMs), at different time points. Patch-clamp analysis showed that If density did not change during differentiation; however, after day 30, it activates at more negative potential and with slower time constants. These changes are accompanied by a slowing in beating rate. If displayed the voltage-dependent block by caesium and reversed (Erev) at - 22 mV, compatibly with the 3:1 K+/Na+ permeability ratio. Lowering [Na+]o (30 mM) shifted the Erev to - 39 mV without affecting conductance. Increasing [K+]o (30 mM) shifted the Erev to - 15 mV with a fourfold increase in conductance. pCMs express mainly HCN4 and HCN1 together with the accessory subunits CAV3, KCR1, MiRP1, and SAP97 that contribute to the context-dependence of If. Autonomic agonists modulated the diastolic depolarization, and thus rate, of pCMs. The adrenergic agonist isoproterenol induced rate acceleration and a positive shift of If voltage-dependence (EC50 73.4 nM). The muscarinic agonists had opposite effects (Carbachol EC50, 11,6 nM). Carbachol effect was however small but it could be increased by pre-stimulation with isoproterenol, indicating low cAMP levels in pCMs. In conclusion, we demonstrated that pCMs display an If with the physiological properties expected by pacemaker cells and may thus represent a suitable model for studying human If-related sinus arrhythmias.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Relógios Biológicos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Eletrofisiologia/métodos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp/métodos , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiologia
7.
Animals (Basel) ; 11(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546454

RESUMO

Heritage breeds can be considered a genetic reservoir of genetic variability to be conserved and valorized considering their historical, cultural, and adaptive characteristics and possibly for their high potential in commercial hybrid genetic improvement by gene introgression. The aim of the present research is to investigate via Copy Number Variant (CNVs) the genomic makeup of 4 Italian autochthonous turkey breeds (Bronzato Comune-BrCI, 24; Ermellinato di Rovigo-ErRo, 24; Parma e Piacenza-PrPc, 25; Romagnolo-RoMa, 29). CNVs detection was performed using two different software and an interbreed CNVs comparison was carried out. A total of 1077 CNVs were identified in 102 turkeys, summarized into 519 CNV regions (CNVRs), which resulted after merging in 101 and 18 breed and shared regions. Biodiversity was analyzed using the effective information supplied by CNVs analysis, and BrCI and ErRo were characterized by a low mapped CNV number. Differences were described at a genomic level related to physiological, reproductive, and behavioral traits. The comparison with other three Italian turkey breeds (Brianzolo, Colle Euganei, and Nero Italiano) using a CNV data set available in the literature showed high clustering properties at the genomic level, and their relationships are strictly linked to the geographical origin and to the history of the rural structure of their native regions.

8.
Cardiovasc Res ; 116(6): 1147-1160, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504264

RESUMO

AIMS: Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS: Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS: Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.


Assuntos
Potenciais de Ação/genética , Fibrilação Atrial/genética , Canais de Cálcio Tipo L/genética , Frequência Cardíaca/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Resistência a Medicamentos/genética , Predisposição Genética para Doença , Frequência Cardíaca/efeitos dos fármacos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Pessoa de Meia-Idade , Irmãos , Sequenciamento do Exoma
9.
Stem Cell Res ; 40: 101547, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31479876

RESUMO

GNB5 loss-of-function pathogenic variants cause IDDCA, a rare autosomal recessive human genetic disease characterized by infantile onset of intellectual disability, sinus bradycardia, hypotonia, visual abnormalities, and epilepsy. We generated human induced pluripotent stem cells (hiPSCs) from skin fibroblasts of a patient with the homozygous c.136delG frameshift variant, and a GNB5 knock-out (KO) line by CRISPR/Cas9 editing. hiPSCs express common pluripotency markers and differentiate into the three germ layers. These lines represent a powerful cellular model to study the molecular basis of GNB5-related disorders as well as offer an in vitro model for drug screening.


Assuntos
Linhagem Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Doenças Genéticas Inatas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular/citologia , Células Cultivadas , Criança , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Mutação da Fase de Leitura , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Edição de Genes , Técnicas de Inativação de Genes , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/fisiopatologia , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade
10.
Epilepsy Res ; 153: 49-58, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986657

RESUMO

The Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels are highly expressed in the Central Nervous Systems, where they are responsible for the Ih current. Together with specific accessory proteins, these channels finely regulate neuronal excitability and discharge activity. In the last few years, a substantial body of evidence has been gathered showing that modifications of Ih can play an important role in the pathogenesis of epilepsy. However, the extent to which HCN dysfunction is spread among the epileptic population is still unknown. The aim of this work is to evaluate the impact of genetic mutations potentially affecting the HCN channels' activity, using a NGS approach. We screened a large cohort of patients with epilepsy of unknown etiology for mutations in HCN1, HCN2 and HCN4 and in genes coding for accessory proteins (MiRP1, Filamin A, Caveolin-3, TRIP8b, Tamalin, S-SCAM and Mint2). We confirmed the presence of specific mutations of HCN genes affecting channel function and predisposing to the development of the disease. We also found several previously unreported additional genetic variants, whose contribution to the phenotype remains to be clarified. According to these results and data from literature, alteration of HCN1 channel function seems to play a major role in epilepsy, but also dysfunctional HCN2 and HCN4 channels can predispose to the development of the disease. Our findings suggest that inclusion of the genetic screening of HCN channels in diagnostic procedures of epileptic patients should be recommended. This would help pave the way for a better understanding of the role played by Ih dysfunction in the pathogenesis of epilepsy.


Assuntos
Epilepsia/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal , Caderinas/genética , Proteínas de Transporte/genética , Caveolina 3/genética , Estudos de Coortes , Eletroencefalografia , Saúde da Família , Feminino , Filaminas/genética , Testes Genéticos , Guanilato Quinases , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores Citoplasmáticos e Nucleares/genética
11.
Brain ; 141(11): 3160-3178, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351409

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.


Assuntos
Epilepsia Generalizada/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mutação/genética , Canais de Potássio/genética , Espasmos Infantis/genética , Adolescente , Adulto , Idoso , Animais , Células CHO , Criança , Pré-Escolar , Cricetulus , Estimulação Elétrica , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Adulto Jovem
12.
Front Mol Neurosci ; 11: 269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127718

RESUMO

HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.

13.
Neurobiol Dis ; 118: 55-63, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936235

RESUMO

The causes of genetic epilepsies are unknown in the majority of patients. HCN ion channels have a widespread expression in neurons and increasing evidence demonstrates their functional involvement in human epilepsies. Among the four known isoforms, HCN1 is the most expressed in the neocortex and hippocampus and de novo HCN1 point mutations have been recently associated with early infantile epileptic encephalopathy. So far, HCN1 mutations have not been reported in patients with idiopathic epilepsy. Using a Next Generation Sequencing approach, we identified the de novo heterozygous p.Leu157Val (c.469C > G) novel mutation in HCN1 in an adult male patient affected by genetic generalized epilepsy (GGE), with normal cognitive development. Electrophysiological analysis in heterologous expression model (CHO cells) and in neurons revealed that L157V is a loss-of-function, dominant negative mutation causing reduced HCN1 contribution to net inward current and responsible for an increased neuronal firing rate and excitability, potentially predisposing to epilepsy. These data represent the first evidence that autosomal dominant missense mutations of HCN1 can also be involved in GGE, without the characteristics of epileptic encephalopathy reported previously. It will be important to include HCN1 screening in patients with GGE, in order to extend the knowledge of the genetic causes of idiopathic epilepsies, thus paving the way for the identification of innovative therapeutic strategies.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mutação/genética , Neurônios/fisiologia , Canais de Potássio/genética , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Epilepsia Generalizada/fisiopatologia , Feminino , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Masculino , Linhagem , Canais de Potássio/química , Estrutura Secundária de Proteína , Ratos , Adulto Jovem
14.
Cardiovasc Res ; 113(10): 1256-1265, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898996

RESUMO

AIMS: Caveolinopathies are a family of genetic disorders arising from alterations of the caveolin-3 (cav-3) gene. The T78M cav-3 variant has been associated with both skeletal and cardiac muscle pathologies but its functional contribution, especially to cardiac diseases, is still controversial. Here, we evaluated the effect of the T78M cav-3 variant on cardiac ion channel function and membrane excitability. METHODS AND RESULTS: We transfected either the wild type (WT) or T78M cav-3 in caveolin-1 knock-out mouse embryonic fibroblasts and found by immunofluorescence and electron microscopy that both are expressed at the plasma membrane and form caveolae. Two ion channels known to interact and co-immunoprecipitate with the cav-3, hKv1.5 and hHCN4, interact also with T78M cav-3 and reside in lipid rafts. Electrophysiological analysis showed that the T78M cav-3 causes hKv1.5 channels to activate and inactivate at more hyperpolarized potentials and the hHCN4 channels to activate at more depolarized potentials, in a dominant way. In spontaneously beating neonatal cardiomyocytes, the expression of the T78M cav-3 significantly increased action potential peak-to-peak variability without altering neither the mean rate nor the maximum diastolic potential. We also found that in a small cohort of patients with supraventricular arrhythmias, the T78M cav-3 variant is more frequent than in the general population. Finally, in silico analysis of both sinoatrial and atrial cell models confirmed that the T78M-dependent changes are compatible with a pro-arrhythmic effect. CONCLUSION: This study demonstrates that the T78M cav-3 induces complex modifications in ion channel function that ultimately alter membrane excitability. The presence of the T78M cav-3 can thus generate a susceptible substrate that, in concert with other structural alterations and/or genetic mutations, may become arrhythmogenic.


Assuntos
Potenciais de Ação , Caveolina 3/genética , Caveolina 3/metabolismo , Fibroblastos/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Células 3T3 , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cavéolas/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Simulação por Computador , Fibroblastos/ultraestrutura , Frequência Cardíaca , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Cinética , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Camundongos , Camundongos Knockout , Modelos Cardiovasculares , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Contração Miocárdica , Miócitos Cardíacos/ultraestrutura , Canais de Potássio/genética , Canais de Potássio/metabolismo , Ratos Sprague-Dawley , Transfecção
16.
J Interv Card Electrophysiol ; 43(2): 121-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25863800

RESUMO

The sinoatrial node (SAN) and the atrioventricular node (AVN) are the anatomical and functional regions of the heart which play critical roles in the generation and conduction of the electrical impulse. Their functions are ensured by peculiar structural cytological properties and specific collections of ion channels. Impairment of SAN and AVN activity is generally acquired,but in some cases familial inheritance has been established and therefore a genetic cause is involved. In recent years, combined efforts of clinical practice and experimental basic science studies have identified and characterized several causative gene mutations associated with the nodal syndromes. Channelopathies, i.e., diseases associated with defective ion channels, remain the major cause of genetically determined nodal arrhythmias; however, it is becoming increasingly evident that mutations in other classes of regulatory and structural proteins also have profound pathophysiological roles. In this review, we will present some aspects of the genetic identification of the molecular mechanism underlying both SAN and AVN dysfunctions with a particular focus on mutations of the Na, pacemaker (HCN), and Ca channels. Genetic defects in regulatory proteins and calcium-handling proteins will be also considered. In conclusion, the identification of the genetic defects associated with familial nodal dysfunction is an essential step for implementing an appropriate therapeutic treatment.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Nó Atrioventricular/fisiopatologia , Canalopatias/genética , Canalopatias/fisiopatologia , Nó Sinoatrial/fisiopatologia , Predisposição Genética para Doença , Humanos , Canais Iônicos/fisiologia , Mutação
18.
Circ Res ; 113(4): 389-98, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23753573

RESUMO

RATIONALE: A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN. OBJECTIVE: We have explored the possibility of using CD166 expression for isolating SAN progenitors from differentiating embryonic stem cells. METHODS AND RESULTS: We found that in embryonic day 10.5 mouse hearts, CD166 and HCN4, markers of the pacemaker tissue, are coexpressed. Sorting embryonic stem cells for CD166 expression at differentiation day 8 selects a population of pacemaker precursors. CD166+ cells express high levels of genes involved in SAN development (Tbx18, Tbx3, Isl-1, Shox2) and function (Cx30.2, HCN4, HCN1, CaV1.3) and low levels of ventricular genes (Cx43, Kv4.2, HCN2, Nkx2.5). In culture, CD166+ cells form an autorhythmic syncytium composed of cells morphologically similar to and with the electrophysiological properties of murine SAN myocytes. Isoproterenol increases (+57%) and acetylcholine decreases (-23%) the beating rate of CD166-selected cells, which express the ß-adrenergic and muscarinic receptors. In cocultures, CD166-selected cells are able to pace neonatal ventricular myocytes at a rate faster than their own. Furthermore, CD166+ cells have lost pluripotency genes and do not form teratomas in vivo. CONCLUSIONS: We demonstrated for the first time the isolation of a nonteratogenic population of cardiac precursors able to mature and form a fully functional SAN-like tissue.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Nó Sinoatrial/citologia , Células-Tronco/citologia , Acetilcolina/farmacologia , Animais , Biomarcadores/metabolismo , Cardiotônicos/farmacologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Células-Tronco Embrionárias/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Isoproterenol/farmacologia , Camundongos , Modelos Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
J Cardiovasc Electrophysiol ; 24(9): 1021-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23631727

RESUMO

BACKGROUND: Sinus node (SN) dysfunction is observed in some long-QT syndrome (LQTS) patients, but has not been studied as a function of LQTS genotype. LQTS6 involves mutations in the hERG ß-subunit MiRP1, which also interacts with hyperpolarization-activated, cyclic nucleotide gated (HCN) channels-the molecular correlate of SN pacemaker current (If ). An LQTS registry search identified a 55-year male with M54T MiRP1 mutation, history of sinus bradycardia (39-56 bpm), and prolonged QTc. OBJECTIVE: We tested if LQTS6 incorporates sinus bradycardia due to abnormal If . METHODS: We transiently co-transfected neonatal rat ventricular myocytes (to study currents in a myocyte background) with human HCN4 (hHCN4, primary SN isoform) or human HCN2 (hHCN2) and one of the following: empty vector, wild-type hMiRP1 (WT), M54T hMiRP1 (M54T). Current amplitude, voltage dependence, and kinetics were measured by whole cell patch clamp. RESULTS: M54T co-expression decreased HCN4 current density by 80% compared to hHCN4 alone or with WT, and also slowed HCN4 activation at physiologically relevant voltages. Neither WT nor M54T altered HCN4 voltage dependence. A computer simulation predicts that these changes in HCN4 current would decrease rate and be additive with published effects of M54T mutation on hERG kinetics on rate. CONCLUSIONS: We conclude that M54T LQTS6 mutation can cause sinus bradycardia through effects on both hERG and HCN currents. Patients with other LQTS6 mutations should be examined for SN dysfunction, and the effect on HCN current determined.


Assuntos
Relógios Biológicos/genética , Bradicardia/diagnóstico , Bradicardia/genética , Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo/genética , Humanos , Masculino , Pessoa de Meia-Idade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Ratos , Ratos Wistar
20.
J Neurosci ; 31(48): 17327-37, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131395

RESUMO

The hyperpolarization-activated I(h) current, coded for by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, controls synaptic integration and intrinsic excitability in many brain areas. Because of their role in pacemaker function, defective HCN channels are natural candidates for contributing to epileptogenesis. Indeed, I(h) is pathologically altered after experimentally induced seizures, and several independent data indicate a link between dysfunctional HCN channels and different forms of epilepsy. However, direct evidence for functional changes of defective HCN channels correlating with the disease in human patients is still elusive. By screening families with epilepsy for mutations in Hcn1 and Hcn2 genes, we found a recessive loss-of-function point mutation in the gene coding for the HCN2 channel in a patient with sporadic idiopathic generalized epilepsy. Of 17 screened members of the same family, the proband was the only one affected and homozygous for the mutation. The mutation (E515K) is located in the C-linker, a region known to affect channel gating. Functional analysis revealed that homomeric mutant, but not heteromeric wild-type/mutant channels, have a strongly inhibited function caused by a large negative shift of activation range and slowed activation kinetics, effectively abolishing the HCN2 contribution to activity. After transfection into acutely isolated newborn rat cortical neurons, homomeric mutant, but not heteromeric wild type/mutant channels, lowered the threshold of action potential firing and strongly increased cell excitability and firing frequency when compared with wild-type channels. This is the first evidence in humans for a single-point, homozygous loss-of-function mutation in HCN2 potentially associated with generalized epilepsy with recessive inheritance.


Assuntos
Epilepsia/genética , Canais Iônicos/genética , Mutação , Neurônios/fisiologia , Potenciais de Ação/genética , Adulto , Alelos , Animais , Células Cultivadas , Córtex Cerebral/fisiologia , Criança , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/genética , Canais Iônicos/metabolismo , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Canais de Potássio , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA