Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Cyst Fibros ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278759

RESUMO

BACKGROUND: Highly effective CFTR modulator therapy (HEMT) has improved the health of many people with cystic fibrosis (pwCF), offering opportunities to discontinue burdensome therapies. SIMPLIFY included randomized, controlled trials that confirmed non-inferiority of discontinuing versus continuing dornase alfa (DA) or hypertonic saline (HS) for 6 weeks in pwCF on HEMT. In this study of post-trial treatment use by SIMPLIFY participants, we hypothesized that randomization to discontinue DA or HS during the trial would be associated with a higher likelihood of non-use of each medication during follow-up. METHODS: We electronically surveyed SIMPLIFY participants every 4 weeks for 24 weeks after trial completion but before the main trial results were publicly disclosed. We asked them how often they used medications during the previous week. We estimated covariate-adjusted odds ratios (ORs) of DA or HS non-use by logistic regression with generalized estimating equations. RESULTS: After exclusions mostly due to lack of any surveys, 472 participants were included in the analysis population, 181 from the HS trial and 291 from the DA trial. Approximately half of the analysis population completed all six surveys. At every month of follow-up in both trials, the percentage of individuals reporting non-use of DA or HS during the previous week was greater among those randomized to discontinue therapy. Among participants with responses at 24 weeks, 30/122 (24.6 %) in the HS trial and 79/222 (35.6 %) in the DA trial reported non-use of the respective study medication. After adjusting for covariates, participants randomized to discontinue DA were 8.7-times (95 % CI: 4.3-17.7) more likely to not use DA during follow-up than those randomized to continue DA, and participants randomized to discontinue HS were 5.2-times (95 % CI: 2.1-12.8) more likely to not use HS during follow-up compared to those randomized to continue. CONCLUSIONS: In healthy pwCF on ETI, randomization to discontinue DA or HS during SIMPLIFY was associated with greater odds of not using each medication after the trial compared to randomization to continue. These findings suggest that participation in a treatment discontinuation trial can influence participants' post-trial treatment decisions. This possibility may be relevant during discussions about research participation and clinical care.

2.
Bone Res ; 12(1): 43, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103355

RESUMO

Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN+) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN+ osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix+ cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN+ osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor+ and osterix+ osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting.


Assuntos
Apoptose , Macrófagos , Osteoblastos , Osteogênese , Animais , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia , Osteogênese/efeitos dos fármacos , Macrófagos/metabolismo , Feminino , Masculino , Camundongos , Fagocitose/fisiologia , Camundongos Endogâmicos C57BL , Eferocitose
3.
J Leukoc Biol ; 116(4): 753-765, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526212

RESUMO

Macrophage and osteoclast proliferation, differentiation and survival are regulated by colony-stimulating factor 1 receptor (CSF1R) signaling. Osteopetrosis associated with Csf1 and Csf1r mutations has been attributed to the loss of osteoclasts and deficiency in bone resorption. Here, we demonstrate that homozygous Csf1r mutation in rat leads to delayed postnatal skeletal ossification associated with substantial loss of osteal macrophages in addition to osteoclasts. Osteosclerosis and site-specific skeletal abnormalities were reversed by intraperitoneal transfer of wild-type bone marrow cells (bone marrow cell transfer, BMT) at weaning. Following BMT, IBA1+ macrophages were detected before TRAP+ osteoclasts at sites of ossification restoration. These observations extend evidence that osteal macrophages independently contribute to bone anabolism and are required for normal postnatal bone growth and morphogenesis.


Assuntos
Transplante de Medula Óssea , Macrófagos , Osteoclastos , Fenótipo , Animais , Osteoclastos/metabolismo , Ratos , Macrófagos/metabolismo , Desenvolvimento Ósseo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/deficiência , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Osteogênese , Mutação , Masculino , Osteopetrose/patologia , Osteopetrose/genética
4.
Blood ; 142(16): 1339-1347, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37595274

RESUMO

In this spotlight, we review technical issues that compromise single-cell analysis of tissue macrophages, including limited and unrepresentative yields, fragmentation and generation of remnants, and activation during tissue disaggregation. These issues may lead to a misleading definition of subpopulations of macrophages and the expression of macrophage-specific transcripts by unrelated cells. Recognition of the technical limitations of single-cell approaches is required in order to map the full spectrum of tissue-resident macrophage heterogeneity and assess its biological significance.


Assuntos
Artefatos , Macrófagos , Macrófagos/metabolismo , Histiócitos
5.
Lancet Respir Med ; 11(4): 329-340, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36343646

RESUMO

BACKGROUND: Reducing treatment burden is a priority for people with cystic fibrosis, whose health has benefited from using new modulators that substantially increase CFTR protein function. The SIMPLIFY study aimed to assess the effects of discontinuing nebulised hypertonic saline or dornase alfa in individuals using the CFTR modulator elexacaftor plus tezacaftor plus ivacaftor (ETI). METHODS: The SIMPLIFY study included two parallel, multicentre, open-label, randomised, controlled, non-inferiority trials at 80 participating clinics across the USA in the Cystic Fibrosis Therapeutics Development Network. We included individuals with cystic fibrosis aged 12-17 years with percent predicted FEV1 (ppFEV1) of 70% or more, or those aged 18 years or older with ppFEV1 of 60% or more, if they had been taking ETI and either (or both) mucoactive therapies (≥3% hypertonic saline or dornase alfa) for at least 90 days before screening. Participants on both hypertonic saline and dornase alfa were randomly assigned to one of the two trials, and those on a single therapy were assigned to the applicable trial. All participants were then randomly assigned 1:1 to continue or discontinue therapy for 6 weeks using permuted blocks of varying size, stratified by baseline ppFEV1 (week 0; ≥90% or <90%), single or concurrent use of hypertonic saline and dornase alfa, previous SIMPLIFY study participation (yes or no), and age (≥18 or <18 years). For participants randomly assigned to continue their therapy during a given trial, this therapy was instructed to be taken at least once daily according to each participant's pre-existing, clinically prescribed regimen. Hypertonic saline concentration was required to be at least 3%. The primary objective for each trial was to determine whether discontinuing was non-inferior to continuing, measured by the 6-week change in ppFEV1 in the per-protocol population. We established a non-inferiority margin of -3% for the difference between groups in the 6-week change in ppFEV1. Safety outcomes were analysed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04378153. FINDINGS: From Aug 25, 2020, to May 25, 2022, a total of 672 unique participants were screened for eligibility for one or both trials, resulting in 847 total random assignments across both trials with 594 unique participants. 370 participants were randomly assigned in the hypertonic saline trial and 477 in the dornase alfa trial. Participants across both trials had an average ppFEV1 of 96·9%. Discontinuing treatment was non-inferior to continuing treatment with respect to the absolute 6-week change in ppFEV1 in both the hypertonic saline trial (-0·19% [95% CI -0·85 to 0·48] in the discontinuation group [n=133] vs 0·14% [-0·51 to 0·78] in the continuation group [n=140]; between-group difference -0·32% [-1·25 to 0·60]) and dornase alfa trial (0·18% [-0·38 to 0·74] in the discontinuation group [n=199] vs -0·16% [-0·73 to 0·41] in the continuation group [n=193]; between-group difference 0·35% [-0·45 to 1·14]), with consistent results in the intention-to-treat populations. In the hypertonic saline trial, 64 (35%) of 184 in the discontinuation group versus 44 (24%) of 186 participants in the continuation group and, in the dornase alfa trial, 89 (37%) of 240 in the discontinuation group versus 55 (23%) of 237 in the continuation group had at least one adverse event. INTERPRETATION: In individuals with cystic fibrosis on ETI with relatively well preserved pulmonary function, discontinuing daily hypertonic saline or dornase alfa for 6 weeks did not result in clinically meaningful differences in pulmonary function when compared with continuing treatment.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística , Desoxirribonuclease I/efeitos adversos , Pulmão , Solução Salina Hipertônica
6.
Bone Res ; 10(1): 22, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217633

RESUMO

The cells of origin of neurogenic heterotopic ossifications (NHOs), which develop frequently in the periarticular muscles following spinal cord injuries (SCIs) and traumatic brain injuries, remain unclear because skeletal muscle harbors two progenitor cell populations: satellite cells (SCs), which are myogenic, and fibroadipogenic progenitors (FAPs), which are mesenchymal. Lineage-tracing experiments using the Cre recombinase/LoxP system were performed in two mouse strains with the fluorescent protein ZsGreen specifically expressed in either SCs or FAPs in skeletal muscles under the control of the Pax7 or Prrx1 gene promoter, respectively. These experiments demonstrate that following muscle injury, SCI causes the upregulation of PDGFRα expression on FAPs but not SCs and the failure of SCs to regenerate myofibers in the injured muscle, with reduced apoptosis and continued proliferation of muscle resident FAPs enabling their osteogenic differentiation into NHOs. No cells expressing ZsGreen under the Prrx1 promoter were detected in the blood after injury, suggesting that the cells of origin of NHOs are locally derived from the injured muscle. We validated these findings using human NHO biopsies. PDGFRα+ mesenchymal cells isolated from the muscle surrounding NHO biopsies could develop ectopic human bones when transplanted into immunocompromised mice, whereas CD56+ myogenic cells had a much lower potential. Therefore, NHO is a pathology of the injured muscle in which SCI reprograms FAPs to undergo uncontrolled proliferation and differentiation into osteoblasts.

7.
J Bone Miner Res ; 37(3): 531-546, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34841579

RESUMO

Neurogenic heterotopic ossifications (NHOs) form in periarticular muscles after severe spinal cord (SCI) and traumatic brain injuries. The pathogenesis of NHO is poorly understood with no effective preventive treatment. The only curative treatment remains surgical resection of pathological NHOs. In a mouse model of SCI-induced NHO that involves a transection of the spinal cord combined with a muscle injury, a differential gene expression analysis revealed that genes involved in inflammation such as interleukin-1ß (IL-1ß) were overexpressed in muscles developing NHO. Using mice knocked-out for the gene encoding IL-1 receptor (IL1R1) and neutralizing antibodies for IL-1α and IL-1ß, we show that IL-1 signaling contributes to NHO development after SCI in mice. Interestingly, other proteins involved in inflammation that were also overexpressed in muscles developing NHO, such as colony-stimulating factor-1, tumor necrosis factor, or C-C chemokine ligand-2, did not promote NHO development. Finally, using NHO biopsies from SCI and TBI patients, we show that IL-1ß is expressed by CD68+ macrophages. IL-1α and IL-1ß produced by activated human monocytes promote calcium mineralization and RUNX2 expression in fibro-adipogenic progenitors isolated from muscles surrounding NHOs. Altogether, these data suggest that interleukin-1 promotes NHO development in both humans and mice. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Interleucina-1beta/metabolismo , Ossificação Heterotópica , Traumatismos da Medula Espinal , Animais , Humanos , Inflamação/complicações , Interleucina-1 , Camundongos , Músculos/patologia , Ossificação Heterotópica/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/complicações
8.
Cell Rep ; 37(8): 110058, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818538

RESUMO

Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations. The macrophage remnant binding profile reflects interactions between macrophages and other cell types in vivo. Depletion of CD169+ macrophages in vivo eliminates F4/80+ remnant attachment. Remnant-restricted macrophage-specific membrane markers, cytoplasmic fluorescent reporters, and mRNA are all detected in non-macrophage cells including isolated stem and progenitor cells. Analysis of RNA sequencing (RNA-seq) data, including publicly available datasets, indicates that macrophage fragmentation is a general phenomenon that confounds bulk and single-cell analysis of disaggregated hematopoietic tissues. Hematopoietic tissue macrophage fragmentation undermines the accuracy of macrophage ex vivo molecular profiling and creates opportunity for misattribution of macrophage-expressed genes to non-macrophage cells.


Assuntos
Separação Celular/métodos , Macrófagos/citologia , Análise de Célula Única/métodos , Animais , Medula Óssea/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Homeostase , Camundongos
9.
Exp Hematol ; 103: 1-14, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500024

RESUMO

It has recently emerged that tissue-resident macrophages are key regulators of several stem cell niches orchestrating tissue formation during development, as well as postnatally, when they also organize the repair and regeneration of many tissues including the hemopoietic tissue. The fact that macrophages are also master regulators and effectors of innate immunity and inflammation allows them to coordinate hematopoietic response to infections, injuries, and inflammation. After recently reviewing the roles of phagocytes and macrophages in regulating normal and pathologic hematopoietic stem cell niches, we now focus on the key roles of macrophages in regulating erythropoiesis and iron homeostasis. We review herein the recent advances in understanding how macrophages at the center of erythroblastic islands form an erythropoietic niche that controls the terminal differentiation and maturation of erythroblasts into reticulocytes; how red pulp macrophages in the spleen control iron recycling and homeostasis; how these macrophages coordinate emergency erythropoiesis in response to blood loss, infections, and inflammation; and how persistent infections or inflammation can lead to anemia of inflammation via macrophages. Finally, we discuss the technical challenges associated with the molecular characterization of erythroid island macrophages and red pulp macrophages.


Assuntos
Eritropoese , Inflamação/imunologia , Ferro/imunologia , Macrófagos/imunologia , Infecção Persistente/imunologia , Anemia/imunologia , Animais , Eritroblastos/imunologia , Humanos , Nicho de Células-Tronco
10.
Exp Hematol ; 100: 12-31.e1, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298116

RESUMO

The bone marrow (BM) contains a mosaic of niches specialized in supporting different maturity stages of hematopoietic stem and progenitor cells such as hematopoietic stem cells and myeloid, lymphoid, and erythroid progenitors. Recent advances in BM imaging and conditional gene knockout mice have revealed that niches are a complex network of cells of mesenchymal, endothelial, neuronal, and hematopoietic origins, together with local physicochemical parameters. Within these complex structures, phagocytes, such as neutrophils, macrophages, and dendritic cells, all of which are of hematopoietic origin, have been found to be important in regulating several niches in the BM, including hematopoietic stem cell niches, erythropoietic niches, and niches involved in endosteal bone formation. There is also increasing evidence that these macrophages have an important role in adapting hematopoiesis, erythropoiesis, and bone formation in response to inflammatory stressors and play a key part in maintaining the integrity and function of these. Likewise, there is also accumulating evidence that subsets of monocytes, macrophages, and other phagocytes contribute to the progression and response to treatment of several lymphoid malignancies such as multiple myeloma, Hodgkin lymphoma, and non-Hodgkin lymphoma, as well as lymphoblastic leukemia, and may also play a role in myelodysplastic syndrome and myeloproliferative neoplasms associated with Noonan syndrome and aplastic anemia. In this review, the potential functions of macrophages and other phagocytes in normal and pathologic niches are discussed, as are the challenges in studying BM and other tissue-resident macrophages at the molecular level.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/patologia , Macrófagos/patologia , Fagócitos/patologia , Animais , Medula Óssea/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Linfoma/patologia , Macrófagos/citologia , Mieloma Múltiplo/patologia , Fagócitos/citologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
11.
J Bone Miner Res ; 36(11): 2214-2228, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34278602

RESUMO

Osteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. Although mouse ovariectomy (OVX) models have been repeatedly used, variation in strain, experimental design and assessment modalities have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an OVX model in adult C3H/HeJ mice and demonstrated that it presents with human postmenopausal osteoporosis features with reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity. Bone loss was associated with increased osteoclasts on trabecular and endocortical bone and decreased osteoblasts on trabecular bone. Importantly, this OVX model was characterized by delayed fracture healing. Using this validated model, we demonstrated that osteomacs are increased post-OVX on both trabecular and endocortical bone. Dual F4/80 (pan-macrophage marker) and tartrate-resistant acid phosphatase (TRAP) staining revealed osteomacs frequently located near TRAP+ osteoclasts and contained TRAP+ intracellular vesicles. Using an in vivo inducible macrophage depletion model that does not simultaneously deplete osteoclasts, we observed that osteomac loss was associated with elevated extracellular TRAP in bone marrow interstitium and increased serum TRAP. Using in vitro high-resolution confocal imaging of mixed osteoclast-macrophage cultures on bone substrate, we observed macrophages juxtaposed to osteoclast basolateral functional secretory domains scavenging degraded bone byproducts. These data demonstrate a role for osteomacs in supporting osteoclastic bone resorption through phagocytosis and sequestration of resorption byproducts. Overall, our data expose a novel role for osteomacs in supporting osteoclast function and provide the first evidence of their involvement in osteoporosis pathogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Animais , Osso e Ossos , Diferenciação Celular , Feminino , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C3H , Osteoblastos , Osteoclastos , Ovariectomia
12.
Biomaterials ; 275: 120936, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303178

RESUMO

Macrophage-targeted therapies, including macrophage colony-stimulating factor 1 (CSF1), have been shown to have pro-repair impacts post-fracture. Preclinical/clinical applications of CSF1 have been expedited by development of chimeric CSF1-Fc which has extended circulating half-life. Here, we used mouse models to investigate the bone regenerative potential of CSF1-Fc in healthy and osteoporotic fracture. We also explored whether combination of CSF1-Fc with interleukin (IL)-4 provided additional fracture healing benefit in osteopenic bone. Micro-computed tomography, in situ histomorphometry, and bone mechanical parameters were used to assess systemic impacts of CSF1-Fc therapy in naive mice (male and female young, adult and geriatric). An intermittent CSF1-Fc regimen was optimized to mitigate undesirable impacts on bone resorption and hepatosplenomegaly, irrespective of age or gender. The intermittent CSF1-Fc regimen was tested in a mid-diaphyseal femoral fracture model in healthy bones with treatment initiated 1-day post-fracture. Weekly CSF1-Fc did not impact osteoclasts but increased osteal macrophages and improved fracture strength. Importantly, this treatment regimen also improved fracture union and strength in an ovariectomy-model of delayed fracture repair. Combining CSF1-Fc with IL-4 initiated 1-week post-fracture reduced the efficacy of CSF1-Fc. This study describes a novel strategy to specifically achieve bone regenerative actions of CSF1-Fc that has the potential to alleviate fragility fracture morbidity and mortality.


Assuntos
Consolidação da Fratura , Fator Estimulador de Colônias de Macrófagos , Animais , Osso e Ossos , Feminino , Macrófagos , Masculino , Camundongos , Microtomografia por Raio-X
13.
iScience ; 24(5): 102402, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997687

RESUMO

Conventional dendritic cells (cDCs) are traditionally subdivided into cDC1 and cDC2 lineages. Batf3 is a cDC1-required transcription factor, and we observed that Batf3-/- mice harbor a population of cDC1-like cells co-expressing cDC2-associated surface molecules. Using single-cell RNA sequencing with integrated cell surface protein expression (CITE-seq), we found that Batf3-/- mitotic immature cDC1-like cells showed reduced expression of cDC1 features and increased levels of cDC2 features. In wild type, we also observed a proportion of mature cDC1 cells expressing surface features characteristic to cDC2 and found that overall cDC cell state heterogeneity was mainly driven by developmental stage, proliferation, and maturity. We detected population diversity within Sirpa+ cDC2 cells, including a Cd33+ cell state expressing high levels of Sox4 and lineage-mixed features characteristic to cDC1, cDC2, pDCs, and monocytes. In conclusion, these data suggest that multiple cDC cell states can co-express lineage-overlapping features, revealing a level of previously unappreciated cDC plasticity.

14.
J Hematol Oncol ; 14(1): 3, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33402221

RESUMO

BACKGROUND: Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. METHODS: We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. RESULTS: CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48-CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48-CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. CONCLUSION: These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hematopoese/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/farmacologia
15.
Hum Genet ; 140(3): 423-439, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32734384

RESUMO

Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Genômica , Transcriptoma , Substituição de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Heterogeneidade Genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
16.
Exp Hematol ; 82: 33-42, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045657

RESUMO

The erythroblastic island (EBI) is a multicellular structure forming an erythropoietic niche consisting of a central macrophage surrounded by a rosette of maturing erythroblasts. Since their discovery more than 60 years ago, simultaneous quantification and visualization of EBIs remain difficult. Although flow cytometry enables high-throughput quantification of cell aggregates co-expressing macrophage and erythroblast markers, it cannot visually confirm whether the aggregates are genuine EBIs. While immunofluorescence microscopy allows visualization of EBIs, its low throughput limits its use for quantification. In the current study we employed nine-channel imaging flow cytometry (IFC) to develop a method to directly visualize and quantify EBIs in the mouse bone marrow. We found that EBI central macrophages do express F4/80, VCAM-1, and CD169, but not CD11b or Ly6G, and that CD11b+Ly6G+F4/80- granulocytes are found associated at the periphery of 40%-60% EBIs. Furthermore, we show for the first time using IFC that in vivo treatment with the hematopoietic stem cell-mobilizing cytokine granulocyte colony-stimulating factor (G-CSF) reduced EBI frequency in the bone marrow by more than 100-fold. These results indicate that mobilizing doses of G-CSF cause a collapse of EBIs in the bone marrow.


Assuntos
Medula Óssea/metabolismo , Eritroblastos , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos , Macrófagos , Animais , Antígenos de Diferenciação/biossíntese , Eritroblastos/citologia , Eritroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Granulócitos/citologia , Granulócitos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos
17.
Front Immunol ; 10: 377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899259

RESUMO

Neurogenic heterotopic ossifications (NHO) are very incapacitating complications of traumatic brain and spinal cord injuries (SCI) which manifest as abnormal formation of bone tissue in periarticular muscles. NHO are debilitating as they cause pain, partial or total joint ankylosis and vascular and nerve compression. NHO pathogenesis is unknown and the only effective treatment remains surgical resection, however once resected, NHO can re-occur. To further understand NHO pathogenesis, we developed the first animal model of NHO following SCI in genetically unmodified mice, which mimics most clinical features of NHO in patients. We have previously shown that the combination of (1) a central nervous system lesion (SCI) and (2) muscular damage (via an intramuscular injection of cardiotoxin) is required for NHO development. Furthermore, macrophages within the injured muscle play a critical role in driving NHO pathogenesis. More recently we demonstrated that macrophage-derived oncostatin M (OSM) is a key mediator of both human and mouse NHO. We now report that inflammatory monocytes infiltrate the injured muscles of SCI mice developing NHO at significantly higher levels compared to mice without SCI. Muscle infiltrating monocytes and neutrophils expressed OSM whereas mouse muscle satellite and interstitial cell expressed the OSM receptor (OSMR). In vitro recombinant mouse OSM induced tyrosine phosphorylation of the transcription factor STAT3, a downstream target of OSMR:gp130 signaling in muscle progenitor cells. As STAT3 is tyrosine phosphorylated by JAK1/2 tyrosine kinases downstream of OSMR:gp130, we demonstrated that the JAK1/2 tyrosine kinase inhibitor ruxolitinib blocked OSM driven STAT3 tyrosine phosphorylation in mouse muscle progenitor cells. We further demonstrated in vivo that STAT3 tyrosine phosphorylation was not only significantly higher but persisted for a longer duration in injured muscles of SCI mice developing NHO compared to mice with muscle injury without SCI. Finally, administration of ruxolitinib for 7 days post-surgery significantly reduced STAT3 phosphorylation in injured muscles in vivo as well as NHO volume at all analyzed time-points up to 3 weeks post-surgery. Our results identify the JAK/STAT3 signaling pathway as a potential therapeutic target to reduce NHO development following SCI.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Imuno-Histoquímica , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Células Musculares , Ossificação Heterotópica/tratamento farmacológico , Fosforilação , Fator de Transcrição STAT3/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/etiologia , Microtomografia por Raio-X
18.
Biomaterials ; 196: 51-66, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29107337

RESUMO

Osteal macrophages (osteomacs) contribute to bone homeostasis and regeneration. To further distinguish their functions from osteoclasts, which share many markers and growth factor requirements, we developed a rapid, enzyme-free osteomac enrichment protocol that permitted characterization of minimally manipulated osteomacs by flow cytometry. Osteomacs differ from osteoclasts in expression of Siglec1 (CD169). This distinction was confirmed using the CD169-diphtheria toxin (DT) receptor (DTR) knock-in model. DT treatment of naïve CD169-DTR mice resulted in selective and striking loss of osteomacs, whilst osteoclasts and trabecular bone area were unaffected. Consistent with a previously-reported trophic interaction, osteomac loss was accompanied by a concomitant and proportionately striking reduction in osteoblasts. The impact of CD169+ macrophage depletion was assessed in two models of bone injury that heal via either intramembranous (tibial injury) or endochondral (internally-plated femoral fracture model) ossification. In both models, CD169+ macrophage, including osteomac depletion compromised bone repair. Importantly, DT treatment in CD169-DTR mice did not affect osteoclast frequency in either model. In the femoral fracture model, the magnitude of callus formation correlated with the number of F4/80+ macrophages that persisted within the callus. Overall these observations provide compelling support that CD169+ osteomacs, independent of osteoclasts, provide vital pro-anabolic support to osteoblasts during both bone homeostasis and repair.


Assuntos
Osso e Ossos/patologia , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Cicatrização , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Inflamação/patologia , Cinética , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Periósteo/patologia
19.
Blood ; 132(7): 735-749, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-29945953

RESUMO

Distinct subsets of resident tissue macrophages are important in hematopoietic stem cell niche homeostasis and erythropoiesis. We used a myeloid reporter gene (Csf1r-eGFP) to dissect the persistence of bone marrow and splenic macrophage subsets following lethal irradiation and autologous hematopoietic stem cell transplantation in a mouse model. Multiple recipient bone marrow and splenic macrophage subsets survived after autologous hematopoietic stem cell transplantation with organ-specific persistence kinetics. Short-term persistence (5 weeks) of recipient resident macrophages in spleen paralleled the duration of extramedullary hematopoiesis. In bone marrow, radiation-resistant recipient CD169+ resident macrophages and erythroid-island macrophages self-repopulated long-term after transplantation via autonomous cell division. Posttransplant peak expansion of recipient CD169+ resident macrophage number in bone marrow aligned with the persistent engraftment of phenotypic long-term reconstituting hematopoietic stem cells within bone marrow. Selective depletion of recipient CD169+ macrophages significantly compromised the engraftment of phenotypic long-term reconstituting hematopoietic stem cells and consequently impaired hematopoietic reconstitution. Recipient bone marrow resident macrophages are essential for optimal hematopoietic stem cell transplantation outcomes and could be an important consideration in the development of pretransplant conditioning therapies and/or chemoresistance approaches.


Assuntos
Medula Óssea/metabolismo , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Lesões Experimentais por Radiação/metabolismo , Animais , Autoenxertos , Medula Óssea/patologia , Sobrevivência Celular , Células-Tronco Hematopoéticas/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/terapia
20.
Curr Osteoporos Rep ; 15(4): 385-395, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28647885

RESUMO

PURPOSE OF REVIEW: Mounting evidence supporting the critical contribution of macrophages, in particular osteal macrophages, to bone regeneration is reviewed. We specifically examine the potential role of macrophages in the basic multicellular units coordinating lifelong bone regeneration via remodelling and bone regeneration in response to injury. We review and discuss the distinctions between macrophage and osteoclast contributions to bone homeostasis, particularly the dichotomous role of the colony-stimulating factor 1-colony-stimulating factor 1 receptor axis. RECENT FINDINGS: The impact of inflammation associated with aging and other hallmarks of aging, including senescence, on macrophage function is addressed in the context of osteoporosis and delayed fracture repair. Resident macrophages versus recruited macrophage contributions to fracture healing are also discussed. We identify some of the remaining knowledge gaps that will need to be closed in order to maximise benefits from therapeutically modulating or mimicking the function of macrophages to improve bone health and regeneration over a lifetime.


Assuntos
Envelhecimento/imunologia , Regeneração Óssea/imunologia , Consolidação da Fratura/imunologia , Macrófagos/imunologia , Osteoclastos/fisiologia , Osteoporose/imunologia , Envelhecimento/metabolismo , Senescência Celular , Homeostase , Humanos , Inflamação , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...