Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Radiology ; 312(3): e240541, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39287522

RESUMO

Background Incidental extrapulmonary findings are commonly detected on chest CT scans and can be clinically important. Purpose To integrate artificial intelligence (AI)-based segmentation for multiple structures, coronary artery calcium (CAC), and epicardial adipose tissue with automated feature extraction methods and machine learning to detect extrapulmonary abnormalities and predict all-cause mortality (ACM) in a large multicenter cohort. Materials and Methods In this post hoc analysis, baseline chest CT scans in patients enrolled in the National Lung Screening Trial (NLST) from August 2002 to September 2007 were included from 33 participating sites. Per scan, 32 structures were segmented with a multistructure model. For each structure, 15 clinically interpretable radiomic features were quantified. Four general codes describing abnormalities reported by NLST radiologists were applied to identify extrapulmonary significant incidental findings on the CT scans. Death at 2-year and 10-year follow-up and the presence of extrapulmonary significant incidental findings were predicted with ensemble AI models, and individualized structure risk scores were evaluated. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the performance of the models for prediction of ACM and extrapulmonary significant incidental findings. The Pearson χ2 test and Kruskal-Wallis rank sum test were used for statistical analyses. Results A total of 24 401 participants (median age, 61 years [IQR, 57-65 years]; 14 468 male) were included. In 3880 of 24 401 participants (16%), 4283 extrapulmonary significant incidental findings were reported. During the 10-year follow-up, 3389 of 24 401 participants (14%) died. CAC had the highest feature importance for predicting the three study end points. The 10-year ACM model demonstrated the best AUC performance (0.72; per-year mortality of 2.6% above and 0.8% below the risk threshold), followed by 2-year ACM (0.71; per-year mortality of 1.13% above and 0.3% below the risk threshold) and prediction of extrapulmonary significant incidental findings (0.70; probability of occurrence of 25.4% above and 9.6% below the threshold). Conclusion A fully automated AI model indicated extrapulmonary structures at risk on chest CT scans and predicted ACM with explanations. ClinicalTrials.gov Identifier: NCT00047385 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Yanagawa and Hata in this issue.


Assuntos
Detecção Precoce de Câncer , Achados Incidentais , Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/mortalidade , Idoso , Detecção Precoce de Câncer/métodos , Inteligência Artificial , Radiografia Torácica/métodos , Pulmão/diagnóstico por imagem
2.
medRxiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39132480

RESUMO

Background: Computed tomography attenuation correction (CTAC) scans are routinely obtained during cardiac perfusion imaging, but currently only utilized for attenuation correction and visual calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to obtain volumetric measurements of chest body composition from CTAC scans and evaluate these measures for all-cause mortality (ACM) risk stratification. Methods: We applied AI-based segmentation and image-processing techniques on CTAC scans from a large international image-based registry (four sites), to define chest rib cage and multiple tissues. Volumetric measures of bone, skeletal muscle (SM), subcutaneous, intramuscular (IMAT), visceral (VAT), and epicardial (EAT) adipose tissues were quantified between automatically-identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation, and indexed volumes were evaluated for predicting ACM, adjusting for established risk factors and 18 other body compositions measures via Cox regression models and Kaplan-Meier curves. Findings: End-to-end processing time was <2 minutes/scan with no user interaction. Of 9918 patients studied, 5451(55%) were male. During median 2.5 years follow-up, 610 (6.2%) patients died. High VAT, EAT and IMAT attenuation were associated with increased ACM risk (adjusted hazard ratio (HR) [95% confidence interval] for VAT: 2.39 [1.92, 2.96], p<0.0001; EAT: 1.55 [1.26, 1.90], p<0.0001; IMAT: 1.30 [1.06, 1.60], p=0.0124). Patients with high bone attenuation were at lower risk of death as compared to subjects with lower bone attenuation (adjusted HR 0.77 [0.62, 0.95], p=0.0159). Likewise, high SM volume index was associated with a lower risk of death (adjusted HR 0.56 [0.44, 0.71], p<0.0001). Interpretations: CTAC scans obtained routinely during cardiac perfusion imaging contain important volumetric body composition biomarkers which can be automatically measured and offer important additional prognostic value.

4.
Expert Rev Cardiovasc Ther ; 22(8): 367-378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39001698

RESUMO

INTRODUCTION: Myocardial perfusion imaging (MPI) is one of the most commonly ordered cardiac imaging tests. Accurate motion correction, image registration, and reconstruction are critical for high-quality imaging, but this can be technically challenging and has traditionally relied on expert manual processing. With accurate processing, there is a rich variety of clinical, stress, functional, and anatomic data that can be integrated to guide patient management. AREAS COVERED: PubMed and Google Scholar were reviewed for articles related to artificial intelligence in nuclear cardiology published between 2020 and 2024. We will outline the prominent roles for artificial intelligence (AI) solutions to provide motion correction, image registration, and reconstruction. We will review the role for AI in extracting anatomic data for hybrid MPI which is otherwise neglected. Lastly, we will discuss AI methods to integrate the wealth of data to improve disease diagnosis or risk stratification. EXPERT OPINION: There is growing evidence that AI will transform the performance of MPI by automating and improving on aspects of image acquisition and reconstruction. Physicians and researchers will need to understand the potential strengths of AI in order to benefit from the full clinical utility of MPI.


Assuntos
Inteligência Artificial , Imagem de Perfusão do Miocárdio , Humanos , Inteligência Artificial/tendências , Imagem de Perfusão do Miocárdio/métodos , Processamento de Imagem Assistida por Computador/métodos , Cardiologia/tendências , Cardiologia/métodos , Medição de Risco/métodos
6.
Prog Cardiovasc Dis ; 85: 38-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38925259

RESUMO

BACKGROUND: While coronary artery calcium (CAC) CAC scanning has become increasingly used as a tool for primary cardiovascular disease prevention, there has been little study regarding its comparative utilization among ethnic and racial minorities. METHODS: We contrasted the temporal trends in the ethnoracial composition for 73,856 out-patients undergoing stress/rest radionuclide myocardial perfusion imaging (MPI) between 1991 and 2020 and 32,906 undergoing CAC scanning between 1998 and 2020. Both groups were divided into those below and above 65 years. Initial medical insurance claims were used to identify which patients self-paid for SPECT-MPI and CAC studies. RESULTS: Among stress-MPI patients <65 years, the prevalence of White patients declined from 85.5% to 54.0% over the temporal span of our study while the prevalence of Blacks increased from 7.2% to 15.1% and that of Hispanics from 2.3 to 21.6%. Increasing ethnoracial diversification was also noted for SPECT-MPI patients ≥65 years. By contrast, over four-fifths of CAC studies were performed in White patients in each temporal period among both younger and older patients. Among CAC patients <65 years, over 95% of studies were self-paid by patients. For CAC patients ≥65 years, nearly two-third of studies were first submitted to Medicare, but there was no difference in the ethnoracial composition in this group versus initial self-paying patients. CONCLUSIONS: While the ethnoracial diversity of patients undergoing SPECT-MPI markedly increased at our Institution over recent decades, CAC scanning has been disproportionately and consistently utilized by self-paying White patients. These findings highlight the need to make CAC scanning more available among ethnoracial minorities.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Fatores Raciais , Calcificação Vascular , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Etários , Negro ou Afro-Americano/estatística & dados numéricos , Doença da Artéria Coronariana/etnologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico , Diversidade Cultural , Disparidades em Assistência à Saúde/etnologia , Hispânico ou Latino/estatística & dados numéricos , Valor Preditivo dos Testes , Prevalência , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único , Estados Unidos/epidemiologia , Calcificação Vascular/etnologia , Calcificação Vascular/diagnóstico por imagem , Etnicidade , Brancos/estatística & dados numéricos
7.
J Nucl Med ; 65(7): 1144-1150, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38724278

RESUMO

Transthyretin cardiac amyloidosis (ATTR CA) is increasingly recognized as a cause of heart failure in older patients, with 99mTc-pyrophosphate imaging frequently used to establish the diagnosis. Visual interpretation of SPECT images is the gold standard for interpretation but is inherently subjective. Manual quantitation of SPECT myocardial 99mTc-pyrophosphate activity is time-consuming and not performed clinically. We evaluated a deep learning approach for fully automated volumetric quantitation of 99mTc-pyrophosphate using segmentation of coregistered anatomic structures from CT attenuation maps. Methods: Patients who underwent SPECT/CT 99mTc-pyrophosphate imaging for suspected ATTR CA were included. Diagnosis of ATTR CA was determined using standard criteria. Cardiac chambers and myocardium were segmented from CT attenuation maps using a foundational deep learning model and then applied to attenuation-corrected SPECT images to quantify radiotracer activity. We evaluated the diagnostic accuracy of target-to-background ratio (TBR), cardiac pyrophosphate activity (CPA), and volume of involvement (VOI) using the area under the receiver operating characteristic curve (AUC). We then evaluated associations with the composite outcome of cardiovascular death or heart failure hospitalization. Results: In total, 299 patients were included (median age, 76 y), with ATTR CA diagnosed in 83 (27.8%) patients. CPA (AUC, 0.989; 95% CI, 0.974-1.00) and VOI (AUC, 0.988; 95% CI, 0.973-1.00) had the highest prediction performance for ATTR CA. The next highest AUC was for TBR (AUC, 0.979; 95% CI, 0.964-0.995). The AUC for CPA was significantly higher than that for heart-to-contralateral ratio (AUC, 0.975; 95% CI, 0.952-0.998; P = 0.046). Twenty-three patients with ATTR CA experienced cardiovascular death or heart failure hospitalization. All methods for establishing TBR, CPA, and VOI were associated with an increased risk of events after adjustment for age, with hazard ratios ranging from 1.41 to 1.84 per SD increase. Conclusion: Deep learning segmentation of coregistered CT attenuation maps is not affected by the pattern of radiotracer uptake and allows for fully automatic quantification of hot-spot SPECT imaging such as 99mTc-pyrophosphate. This approach can be used to accurately identify patients with ATTR CA and may play a role in risk prediction.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Pirofosfato de Tecnécio Tc 99m , Humanos , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Cardiomiopatias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Neuropatias Amiloides Familiares/diagnóstico por imagem , Pessoa de Meia-Idade , Amiloidose/diagnóstico por imagem
9.
J Cardiovasc Comput Tomogr ; 18(4): 327-333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38589269

RESUMO

AIM: Recent studies suggest that the application of exercise activity questionnaires, including the use of a single-item exercise question, can be additive to the prognostic efficacy of imaging findings. This study aims to evaluate the prognostic efficacy of exercise activity in patients undergoing coronary computed tomography angiography (CCTA). METHODS AND RESULTS: We assessed 9772 patients who underwent CCTA at a single center between 2007 and 2020. Patients were divided into 4 groups of physical activity as no exercise (n â€‹= â€‹1643, 17%), mild exercise (n â€‹= â€‹3156, 32%), moderate exercise (n â€‹= â€‹3542, 36%), and high exercise (n â€‹= â€‹1431,15%), based on a single-item self-reported questionnaire. Coronary stenosis was categorized as no (0%), non-obstructive (1-49%), borderline (50-69%), and obstructive (≥70%). During a median follow-up of 4.64 (IQR 1.53-7.89) years, 490 (7.6%) died. There was a stepwise inverse relationship between exercise activity and mortality (p â€‹< â€‹0.001). Compared with the high activity group, the no activity group had a 3-fold higher mortality risk (HR: 3.3, 95%CI (1.94-5.63), p â€‹< â€‹0.001) after adjustment for age, clinical risk factors, symptoms, and statin use. For any level of CCTA stenosis, mortality rates were inversely associated with the degree of patients' exercise activity. The risk of all-cause mortality was similar among the patients with obstructive stenosis with high exercise versus those with no coronary stenosis but no exercise activity (p â€‹= â€‹0.912). CONCLUSION: Physical activity as assessed by a single-item self-reported questionnaire is a strong stepwise inverse predictor of mortality risk among patients undergoing CCTA.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Estenose Coronária , Exercício Físico , Valor Preditivo dos Testes , Autorrelato , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Prognóstico , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/fisiopatologia , Estenose Coronária/mortalidade , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/fisiopatologia , Medição de Risco , Fatores de Risco , Estudos Retrospectivos , Fatores de Tempo , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia
10.
JACC Cardiovasc Imaging ; 17(7): 780-791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38456877

RESUMO

BACKGROUND: Computed tomography attenuation correction (CTAC) improves perfusion quantification of hybrid myocardial perfusion imaging by correcting for attenuation artifacts. Artificial intelligence (AI) can automatically measure coronary artery calcium (CAC) from CTAC to improve risk prediction but could potentially derive additional anatomic features. OBJECTIVES: The authors evaluated AI-based derivation of cardiac anatomy from CTAC and assessed its added prognostic utility. METHODS: The authors considered consecutive patients without known coronary artery disease who underwent single-photon emission computed tomography/computed tomography (CT) myocardial perfusion imaging at 3 separate centers. Previously validated AI models were used to segment CAC and cardiac structures (left atrium, left ventricle, right atrium, right ventricular volume, and left ventricular [LV] mass) from CTAC. They evaluated associations with major adverse cardiovascular events (MACEs), which included death, myocardial infarction, unstable angina, or revascularization. RESULTS: In total, 7,613 patients were included with a median age of 64 years. During a median follow-up of 2.4 years (IQR: 1.3-3.4 years), MACEs occurred in 1,045 (13.7%) patients. Fully automated AI processing took an average of 6.2 ± 0.2 seconds for CAC and 15.8 ± 3.2 seconds for cardiac volumes and LV mass. Patients in the highest quartile of LV mass and left atrium, LV, right atrium, and right ventricular volume were at significantly increased risk of MACEs compared to patients in the lowest quartile, with HR ranging from 1.46 to 3.31. The addition of all CT-based volumes and CT-based LV mass improved the continuous net reclassification index by 23.1%. CONCLUSIONS: AI can automatically derive LV mass and cardiac chamber volumes from CT attenuation imaging, significantly improving cardiovascular risk assessment for hybrid perfusion imaging.


Assuntos
Inteligência Artificial , Angiografia por Tomografia Computadorizada , Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Valor Preditivo dos Testes , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Calcificação Vascular , Humanos , Pessoa de Meia-Idade , Imagem de Perfusão do Miocárdio/métodos , Feminino , Masculino , Idoso , Medição de Risco , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/mortalidade , Prognóstico , Fatores de Risco , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/fisiopatologia , Angiografia Coronária , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Fatores de Tempo , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Reprodutibilidade dos Testes
11.
Semin Nucl Med ; 54(5): 648-657, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38521708

RESUMO

Myocardial perfusion imaging (MPI), using either single photon emission computed tomography (SPECT) or positron emission tomography (PET), is one of the most commonly ordered cardiac imaging tests, with prominent clinical roles for disease diagnosis and risk prediction. Artificial intelligence (AI) could potentially play a role in many steps along the typical MPI workflow, from image acquisition through to clinical reporting and risk estimation. AI can be utilized to improve image quality, reducing radiation exposure and image acquisition times. Once images are acquired, AI can help optimize motion correction and image registration during image reconstruction or provide direct image attenuation correction. Utilizing these image sets, AI can segment a number of anatomic features from associated computed tomographic imaging or even generate synthetic attenuation imaging. Lastly, AI may play an important role in disease diagnosis or risk prediction by combining the large number of potentially important clinical, stress, and imaging-related variables. This review will focus on the most recent developments in the field, providing clinicians and researchers with a timely update on the field. Additionally, it will discuss future trends including applications of AI during multiple points of the typical MPI workflow to maximize clinical utility and methods to maximize the information that can be obtained from hybrid imaging.


Assuntos
Inteligência Artificial , Cardiologia , Processamento de Imagem Assistida por Computador , Imagem de Perfusão do Miocárdio , Medicina Nuclear , Humanos , Medicina Nuclear/tendências , Medicina Nuclear/métodos , Cardiologia/tendências , Cardiologia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Perfusão do Miocárdio/métodos
13.
Nat Commun ; 15(1): 2747, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553462

RESUMO

Chest computed tomography is one of the most common diagnostic tests, with 15 million scans performed annually in the United States. Coronary calcium can be visualized on these scans, but other measures of cardiac risk such as atrial and ventricular volumes have classically required administration of contrast. Here we show that a fully automated pipeline, incorporating two artificial intelligence models, automatically quantifies coronary calcium, left atrial volume, left ventricular mass, and other cardiac chamber volumes in 29,687 patients from three cohorts. The model processes chamber volumes and coronary artery calcium with an end-to-end time of ~18 s, while failing to segment only 0.1% of cases. Coronary calcium, left atrial volume, and left ventricular mass index are independently associated with all-cause and cardiovascular mortality and significantly improve risk classification compared to identification of abnormalities by a radiologist. This automated approach can be integrated into clinical workflows to improve identification of abnormalities and risk stratification, allowing physicians to improve clinical decision-making.


Assuntos
Cálcio , Volume Cardíaco , Humanos , Ventrículos do Coração , Inteligência Artificial , Tomografia Computadorizada por Raios X/métodos
14.
J Nucl Med ; 65(5): 768-774, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548351

RESUMO

Heart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. Methods: The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort). The algorithm used clinical risk factors, stress variables, SPECT imaging parameters, and fully automated deep learning-generated calcium scores from attenuation CT scans. The model was trained and validated using repeated hold-out (10-fold cross-validation). External validation was conducted on a separate cohort of 2,912 patients. During a median follow-up of 1.9 y, 297 patients (6%) in the internal cohort were admitted for HF exacerbation. Results: The final model demonstrated a higher area under the receiver-operating-characteristic curve (0.87 ± 0.03) for predicting HF admissions than did stress left ventricular ejection fraction (0.73 ± 0.05, P < 0.0001) or a model developed using only clinical parameters (0.81 ± 0.04, P < 0.0001). These findings were confirmed in the external validation cohort (area under the receiver-operating-characteristic curve: 0.80 ± 0.04 for final model, 0.70 ± 0.06 for stress left ventricular ejection fraction, 0.72 ± 0.05 for clinical model; P < 0.001 for all). Conclusion: Integrating SPECT myocardial perfusion imaging into an artificial intelligence-based risk assessment algorithm improves the prediction of HF hospitalization. The proposed method could enable early interventions to prevent HF hospitalizations, leading to improved patient care and better outcomes.


Assuntos
Inteligência Artificial , Insuficiência Cardíaca , Hospitalização , Imagem de Perfusão do Miocárdio , Humanos , Feminino , Masculino , Insuficiência Cardíaca/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Doença Aguda , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Progressão da Doença , Estudos de Coortes
15.
Eur Heart J Cardiovasc Imaging ; 25(7): 996-1006, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38445511

RESUMO

AIMS: Variation in diagnostic performance of single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has been observed, yet the impact of cardiac size has not been well characterized. We assessed whether low left ventricular volume influences SPECT MPI's ability to detect obstructive coronary artery disease (CAD) and its interaction with age and sex. METHODS AND RESULTS: A total of 2066 patients without known CAD (67% male, 64.7 ± 11.2 years) across nine institutions underwent SPECT MPI with solid-state scanners followed by coronary angiography as part of the REgistry of Fast Myocardial Perfusion Imaging with NExt Generation SPECT. Area under receiver-operating characteristic curve (AUC) analyses evaluated the performance of quantitative and visual assessments according to cardiac size [end-diastolic volume (EDV); <20th vs. ≥20th population or sex-specific percentiles], age (<75 vs. ≥75 years), and sex. Significantly decreased performance was observed in patients with low EDV compared with those without (AUC: population 0.72 vs. 0.78, P = 0.03; sex-specific 0.72 vs. 0.79, P = 0.01) and elderly patients compared with younger patients (AUC 0.72 vs. 0.78, P = 0.03), whereas males and females demonstrated similar AUC (0.77 vs. 0.76, P = 0.67). The reduction in accuracy attributed to lower volumes was primarily observed in males (sex-specific threshold: EDV 0.69 vs. 0.79, P = 0.01). Accordingly, a significant decrease in AUC, sensitivity, specificity, and negative predictive value for quantitative and visual assessments was noted in patients with at least two characteristics of low EDV, elderly age, or male sex. CONCLUSION: Detection of CAD with SPECT MPI is negatively impacted by small cardiac size, most notably in elderly and male patients.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Sistema de Registros , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Imagem de Perfusão do Miocárdio/métodos , Idoso , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Tamanho do Órgão , Fatores Sexuais , Angiografia Coronária/métodos , Curva ROC , Fatores Etários , Sensibilidade e Especificidade
16.
NPJ Digit Med ; 7(1): 24, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310123

RESUMO

Epicardial adipose tissue (EAT) volume and attenuation are associated with cardiovascular risk, but manual annotation is time-consuming. We evaluated whether automated deep learning-based EAT measurements from ungated computed tomography (CT) are associated with death or myocardial infarction (MI). We included 8781 patients from 4 sites without known coronary artery disease who underwent hybrid myocardial perfusion imaging. Of those, 500 patients from one site were used for model training and validation, with the remaining patients held out for testing (n = 3511 internal testing, n = 4770 external testing). We modified an existing deep learning model to first identify the cardiac silhouette, then automatically segment EAT based on attenuation thresholds. Deep learning EAT measurements were obtained in <2 s compared to 15 min for expert annotations. There was excellent agreement between EAT attenuation (Spearman correlation 0.90 internal, 0.82 external) and volume (Spearman correlation 0.90 internal, 0.91 external) by deep learning and expert segmentation in all 3 sites (Spearman correlation 0.90-0.98). During median follow-up of 2.7 years (IQR 1.6-4.9), 565 patients experienced death or MI. Elevated EAT volume and attenuation were independently associated with an increased risk of death or MI after adjustment for relevant confounders. Deep learning can automatically measure EAT volume and attenuation from low-dose, ungated CT with excellent correlation with expert annotations, but in a fraction of the time. EAT measurements offer additional prognostic insights within the context of hybrid perfusion imaging.

17.
Int J Cardiol ; 401: 131863, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365012

RESUMO

BACKGROUND: Despite its potential benefits, the utilization of stress-only protocol in clinical practice has been limited. We report utilizing stress-first single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: We assessed 12,472 patients who were referred for SPECT-MPI between 2013 and 2020. The temporal changes in frequency of stress-only imaging were assessed according to risk factors, mode of stress, prior coronary artery disease (CAD) history, left ventricular function, and symptom status. The clinical endpoint was all-cause mortality. RESULTS: In our lab, stress/rest SPECT-MPI in place of rest/stress SPECT-MPI was first introduced in November 2011 and was performed more commonly than rest/stress imaging after 2013. Stress-only SPECT-MPI scanning has been performed in 30-34% of our SPECT-MPI studies since 2013 (i.e.. 31.7% in 2013 and 33.6% in 2020). During the study period, we routinely used two-position imaging (additional prone or upright imaging) to reduce attenuation and motion artifact and introduced SPECT/CT scanner in 2018. The rate of stress-only study remained consistent before and after implementing the SPECT/CT scanner. The frequency of stress-only imaging was 43% among patients without a history of prior CAD and 19% among those with a prior CAD history. Among patients undergoing treadmill exercise, the frequency of stress-only imaging was 48%, while 32% among patients undergoing pharmacologic stress test. In multivariate Cox analysis, there was no significant difference in mortality risk between stress-only and stress/rest protocols in patients with normal SPECT-MPI results (p = 0.271). CONCLUSION: Implementation of a stress-first imaging protocol has consistently resulted in safe cancellation of 30% of rest SPECT-MPI studies.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Humanos , Imagem de Perfusão do Miocárdio/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Doença da Artéria Coronariana/diagnóstico , Fatores de Risco , Teste de Esforço
18.
Eur Heart J Cardiovasc Imaging ; 25(7): 976-985, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376471

RESUMO

AIMS: Vessel-specific coronary artery calcification (CAC) is additive to global CAC for prognostic assessment. We assessed accuracy and prognostic implications of vessel-specific automated deep learning (DL) CAC analysis on electrocardiogram (ECG) gated and attenuation correction (AC) computed tomography (CT) in a large multi-centre registry. METHODS AND RESULTS: Vessel-specific CAC was assessed in the left main/left anterior descending (LM/LAD), left circumflex (LCX), and right coronary artery (RCA) using a DL model trained on 3000 gated CT and tested on 2094 gated CT and 5969 non-gated AC CT. Vessel-specific agreement was assessed with linear weighted Cohen's Kappa for CAC zero, 1-100, 101-400, and >400 Agatston units (AU). Risk of major adverse cardiovascular events (MACE) was assessed during 2.4 ± 1.4 years follow-up, with hazard ratios (HR) and 95% confidence intervals (CI). There was strong to excellent agreement between DL and expert ground truth for CAC in LM/LAD, LCX and RCA on gated CT [0.90 (95% CI 0.89 to 0.92); 0.70 (0.68 to 0.73); 0.79 (0.77 to 0.81)] and AC CT [0.78 (0.77 to 0.80); 0.60 (0.58 to 0.62); 0.70 (0.68 to 0.71)]. MACE occurred in 242 (12%) undergoing gated CT and 841(14%) of undergoing AC CT. LM/LAD CAC >400 AU was associated with the highest risk of MACE on gated (HR 12.0, 95% CI 7.96, 18.0, P < 0.001) and AC CT (HR 4.21, 95% CI 3.48, 5.08, P < 0.001). CONCLUSION: Vessel-specific CAC assessment with DL can be performed accurately and rapidly on gated CT and AC CT and provides important prognostic information.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Sistema de Registros , Calcificação Vascular , Humanos , Feminino , Masculino , Doença da Artéria Coronariana/diagnóstico por imagem , Pessoa de Meia-Idade , Calcificação Vascular/diagnóstico por imagem , Idoso , Medição de Risco , Angiografia por Tomografia Computadorizada/métodos , Prognóstico , Angiografia Coronária/métodos
19.
Sci Rep ; 14(1): 1242, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216603

RESUMO

A network of marine reserves can enhance yield in depleted fisheries by protecting populations, particularly large, old spawners that supply larvae for interspersed fishing grounds. The ability of marine reserves to enhance sustainable fisheries is much less evident. We report empirical evidence of a marine reserve network improving yield regionally for a sustainable spiny lobster fishery, apparently through the spillover of adult lobsters and behavioral adaptation by the fishing fleet. Results of a Before-After, Control-Impact analysis found catch, effort, and Catch-Per-Unit Effort increased after the establishment of marine reserves in the northern region of the fishery where fishers responded by fishing intensively at reserve borders, but declined in the southern region where they vacated once productive fishing grounds. The adaptation of the northern region of the fishery may have been aided by a history of collaboration between fishers, scientists, and managers, highlighting the value of collaborative research and education programs for preparing fisheries to operate productively within a seascape that includes a large marine reserve network.


Assuntos
Pesqueiros , Palinuridae , Animais , Caça , Larva , Conservação dos Recursos Naturais/métodos , Peixes
20.
EBioMedicine ; 99: 104930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168587

RESUMO

BACKGROUND: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction. METHODS: Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual interpretation were included in this cohort analysis. The training population included 9849 patients, and external testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of clusters and their associations with death or myocardial infarction. FINDINGS: Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4 mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, unadjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64-8.20) was higher than the risk associated with pharmacologic stress (HR 3.03, 95% CI 2.53-3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40-2.36). INTERPRETATION: Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans, with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a potential role for patient phenotyping to improve risk stratification of patients with normal imaging results. FUNDING: This work was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R35HL161195 to PS]. The REFINE SPECT database was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R01HL089765 to PS]. MCW was supported by the British Heart Foundation [FS/ICRF/20/26002].


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Perfusão , Prognóstico , Fatores de Risco , Aprendizado de Máquina não Supervisionado , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...