Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 17(1): 69-80, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29188851

RESUMO

The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m-2. For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m-2, oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m-2), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.


Assuntos
Toxinas Bacterianas/biossíntese , Microcystis/metabolismo , Microcystis/efeitos da radiação , Raios Ultravioleta , Toxinas Bacterianas/química , Catalase/metabolismo , Microcystis/enzimologia , Superóxido Dismutase/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-27449270

RESUMO

Microcystis are known for their potential ability to synthesize toxins, mainly microcystins (MCs). In order to evaluate the effects of temperature on chlorophyll a (Chl a), growth, physiological responses and toxin production of a native Microcystis aeruginosa, we exposed the cells to low (23°C) and high (29°C) temperature in addition to a 26°C control treatment. Exponential growth rate was significantly higher at 29°C compared to 23°C and control, reaching 0.43, 0.32 and 0.33day(-)(1) respectively. In addition, there was a delay of the start of exponential growth at 23°C. However, the intracellular concentration of Chl a decreased significantly due to temperature change. A significant increase in intracellular ROS was observed in coincidence with the activation of enzymatic antioxidant catalase (CAT) during the first two days of exposure to 23° and 29°C in comparison to the control experiment, decreasing thereafter to nearly initial values. Five MCs were determined by LC-MS/MS analysis. In the experiments, the highest MC concentration, 205fg [Leu(1)] MC-LR.cell(-1) expressed as MC-LR equivalent was measured in the beginning of the experiment and subsequently declined to 160fg.cell(-1) on day 2 and 70fg.cell(-1) on day 4 in cells exposed to 29°C. The same trend was observed for all other MCs except for the least abundant MC-LR which showed a continuous increase during exposure time. Our results suggest a high ability of M. aeruginosa to perceive ROS and to rapidly initiate antioxidant defenses with a differential response on MC production.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Microcistinas/metabolismo , Microcystis/enzimologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Adaptação Fisiológica , Biomassa , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida , Microcystis/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...