RESUMO
Estimating the latent dynamics underlying biological processes is a central problem in computational biology. State-space models with Gaussian statistics are widely used for estimation of such latent dynamics and have been successfully utilized in the analysis of biological data. Gaussian statistics, however, fail to capture several key features of the dynamics of biological processes (e.g., brain dynamics) such as abrupt state changes and exogenous processes that affect the states in a structured fashion. Although Gaussian mixture process noise models have been considered as an alternative to capture such effects, data-driven inference of their parameters is not well-established in the literature. The objective of this paper is to develop efficient algorithms for inferring the parameters of a general class of Gaussian mixture process noise models from noisy and limited observations, and to utilize them in extracting the neural dynamics that underlie auditory processing from magnetoencephalography (MEG) data in a cocktail party setting. We develop an algorithm based on Expectation-Maximization to estimate the process noise parameters from state-space observations. We apply our algorithm to simulated and experimentally-recorded MEG data from auditory experiments in the cocktail party paradigm to estimate the underlying dynamic Temporal Response Functions (TRFs). Our simulation results show that the richer representation of the process noise as a Gaussian mixture significantly improves state estimation and capturing the heterogeneity of the TRF dynamics. Application to MEG data reveals improvements over existing TRF estimation techniques, and provides a reliable alternative to current approaches for probing neural dynamics in a cocktail party scenario, as well as attention decoding in emerging applications such as smart hearing aids. Our proposed methodology provides a framework for efficient inference of Gaussian mixture process noise models, with application to a wide range of biological data with underlying heterogeneous and latent dynamics.
Assuntos
Vias Auditivas/fisiologia , Algoritmos , Humanos , Magnetoencefalografia/métodos , Modelos NeurológicosRESUMO
In the last few years, a large number of experiments have been focused on exploring the possibility of using non-invasive techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), to identify auditory-related neuromarkers which are modulated by attention. Results from several studies where participants listen to a story narrated by one speaker, while trying to ignore a different story narrated by a competing speaker, suggest the feasibility of extracting neuromarkers that demonstrate enhanced phase locking to the attended speech stream. These promising findings have the potential to be used in clinical applications, such as EEG-driven hearing aids. One major challenge in achieving this goal is the need to devise an algorithm capable of tracking these neuromarkers in real-time when individuals are given the freedom to repeatedly switch attention among speakers at will. Here we present an algorithm pipeline that is designed to efficiently recognize changes of neural speech tracking during a dynamic-attention switching task and to use them as an input for a near real-time state-space model that translates these neuromarkers into attentional state estimates with a minimal delay. This algorithm pipeline was tested with MEG data collected from participants who had the freedom to change the focus of their attention between two speakers at will. Results suggest the feasibility of using our algorithm pipeline to track changes of attention in near-real time in a dynamic auditory scene.
Assuntos
Atenção , Eletroencefalografia , Magnetoencefalografia , Percepção da Fala , Adulto , Algoritmos , Percepção Auditiva , Eletroencefalografia/instrumentação , Auxiliares de Audição , Humanos , Magnetoencefalografia/instrumentaçãoRESUMO
In a complex auditory scene comprising multiple sound sources, humans are able to target and track a single speaker. Recent studies have provided promising algorithms to decode the attentional state of a listener in a competing-speaker environment from non-invasive brain recordings sun exhibit poor performance at temporal resolutions suitable for real-time implementation, which hinders their utilization in emerging applications such as smart hearich as electroencephalography (EEG). These algorithms require substantial training datasets and ofteng aids. In this work, we propose a real-time attention decoding framework by integrating techniques from Bayesian filtering, $\ell_{1}$-regularization, state-space modeling, and Expectation Maximization, which is capable of producing robust and statistically interpretable measures of auditory attention at high temporal resolution. Application of our proposed algorithm to synthetic and real EEG data yields a performance close to the state-of-the-art offline methods, while operating in near real-time with a minimal amount of training data.
Assuntos
Atenção , Teorema de Bayes , Eletroencefalografia , Algoritmos , Percepção Auditiva , Encéfalo , Eletroencefalografia/métodos , HumanosRESUMO
Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, â1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings.
RESUMO
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Assuntos
Córtex Auditivo/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Córtex Auditivo/diagnóstico por imagem , Camundongos , Rede Nervosa/diagnóstico por imagemRESUMO
OBJECTIVE: Characterizing the spectral properties of neuronal responses is an important problem in computational neuroscience, as it provides insight into the spectral organization of the underlying functional neural processes. Although spectral analysis techniques are widely used in the analysis of noninvasive neural recordings such as EEG, their application to spiking data is limited due to the binary and nonlinear nature of neuronal spiking. In this paper, we address the problem of estimating the power spectral density of the neural covariate driving the spiking statistics of a neuronal population from binary observations. METHODS: We consider a neuronal ensemble spiking according to Bernoulli statistics, for which the conditional intensity function is given by the logistic map of a harmonic second-order stationary process with sparse narrowband spectra. By employing sparsity-promoting priors, we compute the maximum a posteriori estimate of the power spectral density of the process from the binary spiking observations. Furthermore, we construct confidence intervals for these estimates by an efficient posterior sampling procedure. RESULTS: We provide simulation studies which reveal that our method outperforms the existing methods for extracting the frequency content of spiking data. Application of our method to clinically recorded spiking data from a patient under general anesthesia reveals a striking resemblance between our estimated power spectral density and that of the local field potential signal. This result corroborates existing findings regarding the salient role of the local field potential as a major neural covariate of rhythmic cortical spiking activity under anesthesia. CONCLUSION: Our technique allows us to analyze the harmonic structure of spiking activity in a robust fashion, independently of the local field potentials, and without any prior assumption of the spectral spread and content of the underlying neural processes. SIGNIFICANCE: Other than its usage in the spectral analysis of neuronal spiking data, our technique can be applied to a wide variety of binary data, such as heart beat data, in order to obtain a robust spectral representation.