Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Blood ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598835

RESUMO

Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase NSD2. A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased NADP(H) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine (SAM), compromising synthesis of creatine from its precursor guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum consistent with impaired utilization of mitochondrial ATP. Accordingly, AK2 suppression increased sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.

6.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328167

RESUMO

Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans.

7.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405853

RESUMO

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

9.
Hematol Oncol Clin North Am ; 38(2): 321-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278626

RESUMO

During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , NF-kappa B/uso terapêutico , Genômica , Bortezomib/uso terapêutico
10.
Immunity ; 56(12): 2816-2835.e13, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091953

RESUMO

Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/genética , Apresentação de Antígeno , Genômica , Citotoxicidade Imunológica/genética , Linhagem Celular Tumoral
11.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37751299

RESUMO

The B cell leukemia/lymphoma 2 (BCL-2) inhibitor venetoclax is effective in chronic lymphocytic leukemia (CLL); however, resistance may develop over time. Other lymphoid malignancies such as diffuse large B cell lymphoma (DLBCL) are frequently intrinsically resistant to venetoclax. Although genomic resistance mechanisms such as BCL2 mutations have been described, this probably only explains a subset of resistant cases. Using 2 complementary functional precision medicine techniques - BH3 profiling and high-throughput kinase activity mapping - we found that hyperphosphorylation of BCL-2 family proteins, including antiapoptotic myeloid leukemia 1 (MCL-1) and BCL-2 and proapoptotic BCL-2 agonist of cell death (BAD) and BCL-2 associated X, apoptosis regulator (BAX), underlies functional mechanisms of both intrinsic and acquired resistance to venetoclax in CLL and DLBCL. Additionally, we provide evidence that antiapoptotic BCL-2 family protein phosphorylation altered the apoptotic protein interactome, thereby changing the profile of functional dependence on these prosurvival proteins. Targeting BCL-2 family protein phosphorylation with phosphatase-activating drugs rewired these dependencies, thus restoring sensitivity to venetoclax in a panel of venetoclax-resistant lymphoid cell lines, a resistant mouse model, and in paired patient samples before venetoclax treatment and at the time of progression.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Camundongos , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína bcl-X/genética , Proteínas Reguladoras de Apoptose , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
12.
Nat Cancer ; 4(5): 754-773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237081

RESUMO

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Genômica , Genoma , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
13.
Nat Cancer ; 3(8): 976-993, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817829

RESUMO

Immunotherapy with anti-GD2 antibodies has advanced the treatment of children with high-risk neuroblastoma, but nearly half of patients relapse, and little is known about mechanisms of resistance to anti-GD2 therapy. Here, we show that reduced GD2 expression was significantly correlated with the mesenchymal cell state in neuroblastoma and that a forced adrenergic-to-mesenchymal transition (AMT) conferred downregulation of GD2 and resistance to anti-GD2 antibody. Mechanistically, low-GD2-expressing cell lines demonstrated significantly reduced expression of the ganglioside synthesis enzyme ST8SIA1 (GD3 synthase), resulting in a bottlenecking of GD2 synthesis. Pharmacologic inhibition of EZH2 resulted in epigenetic rewiring of mesenchymal neuroblastoma cells and re-expression of ST8SIA1, restoring surface expression of GD2 and sensitivity to anti-GD2 antibody. These data identify developmental lineage as a key determinant of sensitivity to anti-GD2 based immunotherapies and credential EZH2 inhibitors for clinical testing in combination with anti-GD2 antibody to enhance outcomes for children with neuroblastoma.


Assuntos
Gangliosídeos , Neuroblastoma , Anticorpos Monoclonais , Criança , Humanos , Imunoterapia , Recidiva Local de Neoplasia/induzido quimicamente , Neuroblastoma/tratamento farmacológico
14.
Nat Genet ; 53(8): 1196-1206, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253920

RESUMO

To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.


Assuntos
Citotoxicidade Imunológica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Células Matadoras Naturais/fisiologia , Células Alógenas/fisiologia , Animais , Antígenos B7/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/fisiologia , Testes Imunológicos de Citotoxicidade/métodos , Citotoxicidade Imunológica/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Genoma Humano , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos Endogâmicos NOD , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos HLA-E
15.
Mol Cancer Ther ; 20(8): 1378-1387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34045234

RESUMO

Large multifunctional peptidase 7 (LMP7/ß5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).


Assuntos
Ácidos Borônicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Compostos de Boro/administração & dosagem , Bortezomib/administração & dosagem , Proliferação de Células , Feminino , Glicina/administração & dosagem , Glicina/análogos & derivados , Humanos , Camundongos , Camundongos Nus , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteólise , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Blood ; 137(26): 3604-3615, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649772

RESUMO

Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood. We show that knockdown of cyclin D1 does not induce resistance to venetoclax, arguing against a direct role for cyclin D1 in venetoclax sensitivity. To identify other factors contributing to venetoclax response, we studied a panel of 31 myeloma cell lines and 25 patient samples tested for venetoclax sensitivity. In cell lines, we corroborated our previous observation that BIM binding to BCL2 correlates with venetoclax response and further showed that knockout of BIM results in decreased venetoclax sensitivity. RNA-sequencing analysis identified expression of B-cell genes as enriched in venetoclax-sensitive myeloma, although no single gene consistently delineated sensitive and resistant cells. However, a panel of cell surface makers correlated well with ex vivo prediction of venetoclax response in 21 patient samples and may serve as a biomarker independent of t(11;14). Assay for transposase-accessible chromatin sequencing of myeloma cell lines also identified an epigenetic program in venetoclax-sensitive cells that was more similar to B cells than that of venetoclax-resistant cells, as well as enrichment for basic leucine zipper domain-binding motifs such as BATF. Together, these data indicate that remnants of B-cell biology are associated with BCL2 dependency and point to novel biomarkers of venetoclax-sensitive myeloma independent of t(11;14).


Assuntos
Linfócitos B/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo , Sulfonamidas/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/metabolismo , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 14/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Translocação Genética/efeitos dos fármacos
17.
Blood Cancer J ; 11(2): 20, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33563894

RESUMO

Additional therapeutic options are needed for relapsed and refractory multiple myeloma (RRMM). We present data from a phase 1b, open-label, dose-escalation study (NCT01965353) of 20 patients with RRMM (median age: 63 years [range: 50-77]) and a median of four prior regimens (range: 2-14); 85% had refractory disease (lenalidomide [80%]; bortezomib [75%]; lenalidomide and bortezomib [50%]). Patients received a median of six cycles (range: 1-74) of panobinostat (10 or 15 mg), lenalidomide 15 mg, bortezomib 1 mg/m2, and dexamethasone 20 mg (pano-RVd). Median follow-up was ~14 months. Six dose-limiting toxicities were reported (mostly hematological); maximum tolerated dose of panobinostat (primary endpoint) was 10 mg. Most common adverse events (AEs) were diarrhea (60%) and peripheral neuropathy (60%); all grade 1/2. Grade 3/4 AEs occurred in 80% of patients and included decreased neutrophil (45%), platelet (25%) and white blood cell (25%) counts, anemia (25%) and hypophosphatemia (25%). No treatment-related discontinuations or mortality occurred. In evaluable patients (n = 18), overall response rate was 44%, and clinical benefit rate was 61%. Median duration of response was 9.2 months; progression-free survival was 7.4 months; overall survival was not reached. Pano-RVd proved generally well-tolerated and demonstrated potential to overcome lenalidomide and/or bortezomib resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Panobinostat/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Feminino , Seguimentos , Humanos , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Panobinostat/administração & dosagem , Panobinostat/efeitos adversos
18.
Cancer Discov ; 11(6): 1542-1561, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33500244

RESUMO

Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Células-Tronco Neoplásicas/citologia , Indução de Remissão , Animais , Linhagem Celular Tumoral/citologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/patologia , Fenótipo
19.
Cancer Cell ; 39(2): 240-256.e11, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417832

RESUMO

Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.


Assuntos
Adaptação Fisiológica/genética , Embrião de Mamíferos/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Adaptação Fisiológica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Diapausa/efeitos dos fármacos , Diapausa/genética , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Fatores de Transcrição/genética , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Cell Rep ; 34(1): 108532, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406420

RESUMO

Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex. The substantial gene-level differences for resistance mechanisms to CRBN- versus VHL-based degraders explains mechanistically the lack of cross-resistance with sequential administration of these two degrader classes. Development of degraders leveraging more diverse E3 ligases/CRLs may facilitate sequential/alternating versus combined uses of these agents toward potentially delaying or preventing resistance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Homologia de Genes , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Proteínas Oncogênicas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteólise , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...