Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Curr Opin Pharmacol ; 68: 102331, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535235

RESUMO

Antigen stimulation induces adenosine triphosphate (ATP) release from naïve lymphocytes in lymphoid tissues. However, previous studies indicated that the non-lytic release of ATP also occurs in most tissues and cell types under physiological conditions. Here, we show that extracellular ATP (eATP) is indeed constitutively produced by naïve T cells in response to lymphoid chemokines in uninflamed lymph nodes and is involved in the regulation of immune cell migration. In this review, we briefly summarize the homeostatic role of extracellular ATP in immune cell migration in vivo.


Assuntos
Trifosfato de Adenosina , Linfócitos T , Humanos , Trifosfato de Adenosina/metabolismo , Linfonodos/metabolismo , Movimento Celular
2.
Front Immunol ; 13: 1041025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341444

RESUMO

Understanding the precise mechanism of vaccine-induced protection and the immune correlates of protection against coronavirus disease 2019 (COVID-19) is crucially important for developing next-generation vaccines that confer durable and protective immunity against COVID-19. Similar factors are also important for other infectious diseases. Here, I briefly summarize the mechanism of action of the currently used COVID-19 mRNA vaccines from the viewpoint of the function of the lymphatic system.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Sistema Linfático
3.
Curr Res Immunol ; 3: 175-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045707

RESUMO

Lymphocytes regulate the immune response by circulating between the vascular and lymphatic systems. High endothelial venules, HEVs, special blood vessels expressing selective adhesion molecules, such as PNAd and MAdCAM-1, mediate naïve lymphocyte migration from the vasculature into the lymph nodes and Peyer's patches. We have identified that DACH1 is abundantly expressed in developing HEV-type endothelial cells. DACH1 showed a restricted expression pattern in lymph node blood vessels during the late fetal and early neonatal periods, corresponding to HEV development. The proportion of MAdCAM-1+ and CD34+ endothelial cells is reduced in the lymph nodes of neonatal conventional and vascular-specific Dach1-deficient mice. Dach1-deficient lymph nodes in adult mice demonstrated a lower proportion of PNAd+ cells and lower recruitment of intravenously administered lymphocytes from GFP transgenic mice. These findings suggest that DACH1 promotes the expression of HEV-selective adhesion molecules and mediates lymphocyte trafficking across HEVs into lymph nodes.

4.
5.
Cell Death Discov ; 8(1): 94, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241649

RESUMO

The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4-2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.

6.
Mucosal Immunol ; 15(3): 471-479, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35140345

RESUMO

In nonobese diabetic (NOD) mice, C. rodentium promotes priming of islet-specific T-cells in pancreatic lymph nodes (PaLN), which is a critical step in initiation and perpetuation of islet-autoimmunity. To investigate mechanisms by which C. rodentium promotes T-cell priming in PaLN, we used fluorescent imaging of lymphatic vasculature emanating from colon, followed dendritic cell (DC) migration from colon using photoconvertible-reporter mice, and evaluated the translocation of bacteria to lymph nodes with GFP-C. rodentium and in situ hybridization of bacterial DNA. Fluorescent dextran injected in the colon wall accumulated under subcapsular sinus of PaLN indicating the existence of a lymphatic route from colon to PaLN. Infection with C. rodentium induced DC migration from colon to PaLN and bacterial DNA was detected in medullary sinus and inner cortex of PaLN. Following infection with GFP-C. rodentium, fluorescence appeared in macrophages and gut-derived (CD103+) and resident (CD103-/XCR1+) DC, indicating transportation of bacteria from colon to PaLN both by DC and by lymph itself. This induced proinflammatory cytokine transcripts, activation of DC and islet-specific T-cells in PaLN of NOD mice. Our findings demonstrate the existence of a direct, enteric pathogen-activated route for lymph, cells, and bacteria from colon, which promotes activation of islet-specific T-cells in PaLN.


Assuntos
Autoimunidade , Vasos Linfáticos , Animais , DNA Bacteriano , Linfonodos , Camundongos , Camundongos Endogâmicos NOD
7.
Cancer Sci ; 113(4): 1338-1351, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133060

RESUMO

Chemokines are a family of cytokines that mediate leukocyte trafficking and are involved in tumor cell migration, growth, and progression. Although there is emerging evidence that multiple chemokines are expressed in tumor tissues and that each chemokine induces receptor-mediated signaling, their collaboration to regulate tumor invasion and lymph node metastasis has not been fully elucidated. In this study, we examined the effect of CXCL12 on the CCR7-dependent signaling in MDA-MB-231 human breast cancer cells to determine the role of CXCL12 and CCR7 ligand chemokines in breast cancer metastasis to lymph nodes. CXCL12 enhanced the CCR7-dependent in vitro chemotaxis and cell invasion into collagen gels at suboptimal concentrations of CCL21. CXCL12 promoted CCR7 homodimer formation, ligand binding, CCR7 accumulation into membrane ruffles, and cell response at lower concentrations of CCL19. Immunohistochemistry of MDA-MB-231-derived xenograft tumors revealed that CXCL12 is primarily located in the pericellular matrix surrounding tumor cells, whereas the CCR7 ligand, CCL21, mainly associates with LYVE-1+ intratumoral and peritumoral lymphatic vessels. In the three-dimensional tumor invasion model with lymph networks, CXCL12 stimulation facilitates breast cancer cell migration to CCL21-reconstituted lymphatic networks. These results indicate that CXCL12/CXCR4 signaling promotes breast cancer cell migration and invasion toward CCR7 ligand-expressing intratumoral lymphatic vessels and supports CCR7 signaling associated with lymph node metastasis.


Assuntos
Neoplasias da Mama , Movimento Celular , Quimiocina CXCL12 , Vasos Linfáticos , Receptores CCR7 , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL21/metabolismo , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Ligantes , Metástase Linfática , Vasos Linfáticos/patologia , Invasividade Neoplásica , Receptores CCR7/metabolismo , Receptores CXCR4
8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34949714

RESUMO

The interaction of signal regulatory protein α (SIRPα) on macrophages with CD47 on cancer cells is thought to prevent antibody (Ab)-dependent cellular phagocytosis (ADCP) of the latter cells by the former. Blockade of the CD47-SIRPα interaction by Abs to CD47 or to SIRPα, in combination with tumor-targeting Abs such as rituximab, thus inhibits tumor formation by promoting macrophage-mediated ADCP of cancer cells. Here we show that monotherapy with a monoclonal Ab (mAb) to SIRPα that also recognizes SIRPß1 inhibited tumor formation by bladder and mammary cancer cells in mice, with this inhibitory effect being largely dependent on macrophages. The mAb to SIRPα promoted polarization of tumor-infiltrating macrophages toward an antitumorigenic phenotype, resulting in the killing and phagocytosis of cancer cells by the macrophages. Ablation of SIRPα in mice did not prevent the inhibitory effect of the anti-SIRPα mAb on tumor formation or its promotion of the cancer cell-killing activity of macrophages, however. Moreover, knockdown of SIRPß1 in macrophages attenuated the stimulatory effect of the anti-SIRPα mAb on the killing of cancer cells, whereas an mAb specific for SIRPß1 mimicked the effect of the anti-SIRPα mAb. Our results thus suggest that monotherapy with Abs to SIRPα/SIRPß1 induces antitumorigenic macrophages and thereby inhibits tumor growth and that SIRPß1 is a potential target for cancer immunotherapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antineoplásicos/farmacologia , Imunoterapia/métodos , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Camundongos , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Rituximab , Resultado do Tratamento , Bexiga Urinária
9.
Inflamm Regen ; 41(1): 32, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635187

RESUMO

Recent single-cell RNA sequencing studies in mouse and human have clearly indicated that lymphatic endothelial cells (LECs) consist of multiple cell subsets, each expressing a unique set of genes, residing in distinct locations in the body. These studies have also revealed a conserved pattern of gene expression in LECs across animal species, as well as specialized sets of genes unique to each species. However, the extent to which this heterogeneity is adaptive to the external milieu surrounding LECs has remained unclear. The transcriptional and regulatory pathways that program the different subsets of LECs also remain unexplored.

10.
Int Immunol ; 33(10): 507-513, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-33569606

RESUMO

Understanding the precise nature and durability of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in order to gain insight into the pathophysiology of coronavirus disease 2019 (COVID-19) and to develop novel treatment strategies to this disease. Here, I succinctly summarize what is currently known and unknown about the immune response during COVID-19 and discuss whether natural infections can lead to herd immunity.


Assuntos
COVID-19/imunologia , Imunidade Coletiva/imunologia , Imunidade Inata/imunologia , Animais , Humanos , SARS-CoV-2/imunologia
11.
Front Immunol ; 12: 786595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003105

RESUMO

Whereas adenosine 5'-triphosphate (ATP) is the major energy source in cells, extracellular ATP (eATP) released from activated/damaged cells is widely thought to represent a potent damage-associated molecular pattern that promotes inflammatory responses. Here, we provide suggestive evidence that eATP is constitutively produced in the uninflamed lymph node (LN) paracortex by naïve T cells responding to C-C chemokine receptor type 7 (CCR7) ligand chemokines. Consistently, eATP was markedly reduced in naïve T cell-depleted LNs, including those of nude mice, CCR7-deficient mice, and mice subjected to the interruption of the afferent lymphatics in local LNs. Stimulation with a CCR7 ligand chemokine, CCL19, induced ATP release from LN cells, which inhibited CCR7-dependent lymphocyte migration in vitro by a mechanism dependent on the purinoreceptor P2X7 (P2X7R), and P2X7R inhibition enhanced T cell retention in LNs in vivo. These results collectively indicate that paracortical eATP is produced by naïve T cells in response to constitutively expressed chemokines, and that eATP negatively regulates CCR7-mediated lymphocyte migration within LNs via a specific subtype of ATP receptor, demonstrating its fine-tuning role in homeostatic cell migration within LNs.


Assuntos
Trifosfato de Adenosina/metabolismo , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Microscopia Intravital , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos , Modelos Animais , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Ratos , Receptores CCR7/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Linfócitos T/metabolismo , Tetrazóis/farmacologia
12.
J Clin Invest ; 130(11): 6109-6123, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33074246

RESUMO

T cell exclusion causes resistance to cancer immunotherapies via immune checkpoint blockade (ICB). Myeloid cells contribute to resistance by expressing signal regulatory protein-α (SIRPα), an inhibitory membrane receptor that interacts with ubiquitous receptor CD47 to control macrophage phagocytosis in the tumor microenvironment. Although CD47/SIRPα-targeting drugs have been assessed in preclinical models, the therapeutic benefit of selectively blocking SIRPα, and not SIRPγ/CD47, in humans remains unknown. We report a potent synergy between selective SIRPα blockade and ICB in increasing memory T cell responses and reverting exclusion in syngeneic and orthotopic tumor models. Selective SIRPα blockade stimulated tumor nest T cell recruitment by restoring murine and human macrophage chemokine secretion and increased anti-tumor T cell responses by promoting tumor-antigen crosspresentation by dendritic cells. However, nonselective SIRPα/SIRPγ blockade targeting CD47 impaired human T cell activation, proliferation, and endothelial transmigration. Selective SIRPα inhibition opens an attractive avenue to overcoming ICB resistance in patients with elevated myeloid cell infiltration in solid tumors.


Assuntos
Memória Imunológica , Imunoterapia , Neoplasias Mamárias Experimentais/terapia , Proteínas de Neoplasias/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Animais , Feminino , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Receptores Imunológicos/genética , Linfócitos T/patologia
13.
EMBO Mol Med ; 12(6): e12661, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32379923

RESUMO

The ongoing severe acute respiratory sickness coronavirus 2 (SARS-CoV-2) pandemic has resulted in more than 3,600,000 detected cases of COVID-19 illness and nearly 260,000 deaths worldwide as of May 6, 2020. Recently, BCG vaccination was shown to correlate with reduced COVID-19 case fatality rates (preprint: Miller et al, 2020; preprint: Sala & Miyakawa, 2020; https://www.jsatonotes.com/2020/03/if-i-were-north-americaneuropeanaustral.html). The most recent data from publicly available resources also indicate that both COVID-19 incidence and total deaths are strongly associated with the presence or absence of national mandatory BCG vaccination programs. As seen in Table 1, seven of eight countries with very low numbers of total deaths (< 40 per 1 million population) adopted a mandatory BCG vaccination program using one of a set of 6 separate BCG strains (Table 1). In contrast, COVID-19 mortality was markedly higher in countries where BCG vaccination is not widely administered or is given only to high-risk groups. COVID-19 mortality was also higher in countries where widespread BCG vaccination was discontinued more than 20 years ago and in countries that used the BCG Denmark strain regularly or temporarily. This raises the question of whether BCG vaccination and reduced COVID-19 mortality are causally related. An additional question is why different BCG strains may be variably associated with mortality.


Assuntos
Vacina BCG/imunologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium bovis/metabolismo , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Risco , SARS-CoV-2 , Sorogrupo , Análise de Sobrevida , Vacinação
14.
Mucosal Immunol ; 13(2): 245-256, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31772321

RESUMO

All leukocytes can get entrance into the draining lymph nodes via the afferent lymphatics but only lymphoid cells can leave the nodes. The molecular mechanisms behind this phenomenon have remained unknown. We employed genome wide microarray analyses of the subcapsular sinus and lymphatic sinus (LS) endothelial cells and found Robo4 to be selectively expressed on LS lymphatics. Further analyses showed high Robo4 expression in lymphatic vessels of Peyer's patches, which only have efferent lymphatic vessels. In functional assays, Robo4-deficient animals showed accumulation of naïve  B cells (CD19+/CD62Lhi/CD44lo) in Peyer's patches, whereas no difference was seen within other lymphocyte subtypes. Short-term lymphocyte homing via high endothelial venules to peripheral and mesenteric lymph nodes and Peyer's patches was also slightly impaired in Robo4 knockout animals. These results show for the first time, selective expression of Robo4 in the efferent arm of the lymphatics and its role in controlling the turnover of a subset of B lymphocytes from Peyer's patches.


Assuntos
Anticorpos Bloqueadores/uso terapêutico , Linfócitos B/imunologia , Linfonodos/imunologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
15.
Elife ; 82019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570118

RESUMO

While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.


Assuntos
Movimento Celular , Células Dendríticas/fisiologia , Células Endoteliais/fisiologia , Linfonodos/citologia , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Camundongos Knockout , Esfingosina/metabolismo
16.
Arthritis Res Ther ; 21(1): 191, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429784

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA), generated by autotaxin (ATX), is a bioactive lipid mediator that binds to the receptors (LPA1-6), and serves as an important mediator in inflammation. Previous studies have demonstrated that LPA-LPA1 cascade contributes to arthritis and skin sclerosis. In this study, we examined the role of LPA signals in murine Candida albicans water-soluble fraction (CAWS)-induced vasculitis. METHODS: ATX and LPA receptor expressions were analyzed by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. Effects of LPA1 inhibition on CAWS-induced vasculitis were evaluated in LPA1-deficient mice or using an LPA1 antagonist, LA-01. Migration activity was assessed using a chemotaxis chamber. The number of migrated fluorescently labeled neutrophils, which were transferred into the vasculitis mice, was counted in the aortic wall. CXCL1 and IL-8 concentrations were determined by enzyme-linked immunosorbent assay. RESULTS: ATX and LPA1 were highly expressed in the inflamed region of CAWS-induced vasculitis. Severity of the vasculitis in LPA1-deficient mice was suppressed. The LPA1 antagonist, LA-01, also ameliorated the CAWS-induced vasculitis. LPA induced neutrophil migration, which was inhibited by LA-01 in vitro. Infiltration of transferred neutrophils from LPA1-deficient mice into the coronary arteries was suppressed. LA-01 also inhibited the infiltration of wild-type neutrophils. Expression of CXCL1 and IL-8 in human endothelial cells was enhanced by LPA, but was inhibited by LA-01. ATX and LPA1 expression levels were higher in the affected skin region of vasculitis patients than in healthy controls. CONCLUSIONS: These results suggest that LPA-LPA1 signaling contributes to the development of vasculitis via chemoattractant production from endothelial cells followed by neutrophil recruitment. Thus, LPA1 has potential as a novel target for vasculitis therapies.


Assuntos
Quimiocina CXCL1/metabolismo , Interleucina-8/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Vasculite/metabolismo , Animais , Movimento Celular , Cefalosporinas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Vasculite/diagnóstico , Vasculite/tratamento farmacológico
17.
Immunity ; 51(3): 561-572.e5, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31402260

RESUMO

Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.


Assuntos
Células Endoteliais/imunologia , Neutrófilos/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Células Cultivadas , Humanos , Lectinas Tipo C/imunologia , Antígenos CD15/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/imunologia , Inquéritos e Questionários
18.
Ann Gastroenterol Surg ; 2(6): 451-462, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30460349

RESUMO

AIM: Immunotherapies blocking the CD47-SIRPα pathway by targeting CD47 enhance macrophage phagocytosis of neoplastic cells in mouse models. As SIRPα exhibits relatively restricted tissue expression, SIRPα antagonists may be better tolerated than agents targeting CD47, which is ubiquitously expressed in many tissues. Here, we investigated the therapeutic impact of monoclonal antibodies (mAbs) against CD47 and/or SIRPα on gastroenterological tumors in syngeneic immunocompetent mouse models. METHODS: We used in vitro and in vivo phagocytosis assays in C57BL/6J (B6) mice to investigate anti-CD47/SIRPα mAb effects on Hepa1-6 and CMT93 originating from B6 mice. The influence of these mAbs on macrophage transmigration was also assessed. To investigate anti-SIRPα mAb therapy-induced inhibitory effects on sporadic colon cancer growth, we used a CDX2P9.5-NLS Cre;APC + /FLOX (CPC-APC) mouse model. RESULTS: Systemic anti-SIRPα mAb administration significantly increased Hepa1-6 and CMT93 cell susceptibility to macrophage phagocytosis, both in vitro and in vivo. Conversely, similarly administered anti-CD47 mAb did not promote macrophage phagocytosis of target cells, whereas cells incubated with anti-CD47 mAb prior to inoculation were more susceptible to macrophage phagocytosis. In vitro cell migration assays revealed that binding with anti-CD47 mAb inhibited macrophage transmigration. Anti-SIRPα mAb treatment inhibited tumor progression in CPC-APC mice and significantly improved overall survival. Anti-CD47 mAb administration in vivo eliminated the phagocytosis-promoting CD47 blockade effect, probably by inhibiting macrophage transmigration/chemotaxis. In contrast, anti-SIRPα mAb exhibited enhanced macrophage phagocytic activity and marked anti-tumor effects against gastroenterological malignancies. CONCLUSION: SIRPα mAb augmentation of macrophage phagocytic activity may represent an effective treatment strategy for human gastrointestinal tumors.

19.
Front Immunol ; 9: 2196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333825

RESUMO

The spatiotemporal regulation of immune responses in the lymph node (LN) depends on its sophisticated tissue architecture, consisting of several subcompartments supported by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal structures and associated FSC subsets are not fully understood. Using several gene reporter mice, we sought to discover unrecognized stromal structures and FSCs in the LN. The four previously identified FSC subsets in the cortex are clearly distinguished by the expression pattern of reporters including PDGFRß, CCL21-ser, and CXCL12. Herein, we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep cortex periphery (DCP) that is characterized by preferential B cell localization. This subset was clearly different from CXCL12highLepRhigh FSCs in the medullary cord, which harbors plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and, to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well as medulla requires B cells. Together, our findings suggest the presence of a unique microenvironment in the cortex-medulla boundary and offer an advanced view of the multi-layered stromal framework constructed by distinct FSC subsets in the LN.


Assuntos
Linfócitos B/imunologia , Quimiocina CCL21/imunologia , Fibroblastos/imunologia , Linfonodos/imunologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/imunologia , Animais , Quimiocina CCL21/genética , Fibroblastos/citologia , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Células Estromais/citologia , Células Estromais/imunologia
20.
Methods Mol Biol ; 1763: 43-52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29476487

RESUMO

T-cell motility is essential for the T cells' ability to scan antigens within lymph nodes and initiate contact with antigen-presenting cells. While T-cell migration has been extensively studied using in vitro migration assays, accumulating evidence indicates that the T-cell migration within lymph nodes is modulated by the surrounding cells and extracellular matrix, which form the confined architecture of the lymph nodes. Therefore, to understand the mechanisms of T-cell motility in vivo, their cell migration must be analyzed under physiological conditions. To this end, two-photon microscopy is extremely useful; this technique enables the tracking of fluorescently labeled cells in vivo and ex vivo, with high spatial and temporal resolutions. Here we describe the experimental procedures for applying two-photon microscopy to the in vivo and ex vivo imaging of T-cell migration in mouse lymph nodes. These approaches provide physiological insight into the mechanisms of T-cell behavior at a single-cell level in the three-dimensional lymph node environment.


Assuntos
Movimento Celular , Rastreamento de Células/métodos , Linfonodos/citologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Molecular/métodos , Linfócitos T/citologia , Linfócitos T/fisiologia , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...