Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(9): e0011205, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669291

RESUMO

Hundreds of millions of people worldwide are infected with the whipworm Trichuris trichiura. Novel treatments are urgently needed as current drugs, such as albendazole, have relatively low efficacy. We have investigated whether drugs approved for other human diseases could be repurposed as novel anti-whipworm drugs. In a previous comparative genomics analysis, we identified 409 drugs approved for human use that we predicted to target parasitic worm proteins. Here we tested these ex vivo by assessing motility of adult worms of Trichuris muris, the murine whipworm, an established model for human whipworm research. We identified 14 compounds with EC50 values of ≤50 µM against T. muris ex vivo, and selected nine for testing in vivo. However, the best worm burden reduction seen in mice was just 19%. The high number of ex vivo hits against T. muris shows that we were successful at predicting parasite proteins that could be targeted by approved drugs. In contrast, the low efficacy of these compounds in mice suggest challenges due to their chemical properties (e.g. lipophilicity, polarity, molecular weight) and pharmacokinetics (e.g. absorption, distribution, metabolism, and excretion) that may (i) promote absorption by the host gastrointestinal tract, thereby reducing availability to the worms embedded in the large intestine, and/or (ii) restrict drug uptake by the worms. This indicates that identifying structural analogues that have reduced absorption by the host, and increased uptake by worms, may be necessary for successful drug development against whipworms.


Assuntos
Reposicionamento de Medicamentos , Trichuris , Adulto , Humanos , Animais , Camundongos , Trichuris/genética , Genômica , Albendazol/farmacologia , Transporte Biológico
2.
Front Cell Infect Microbiol ; 12: 871860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419299

RESUMO

The intestinal parasite Cryptosporidium is a significant cause of severe diarrhoeal disease that can have long term effects. Therapeutic options remain limited despite a significant impact on public health, partly due to various challenges in the field of Cryptosporidium research, including the availability of genomic and transcriptomic data from environmental and clinical isolates. In this review we explore how long read DNA and RNA sequencing technologies have begun to provide novel insights into the biology of the parasite. The increased deployment of these technologies will help researchers address key gaps in the understanding of Cryptosporidium biology, and ultimately drive translational research and better parasite control.


Assuntos
Criptosporidiose , Cryptosporidium , Criptosporidiose/parasitologia , Cryptosporidium/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Saúde Pública
3.
Trends Parasitol ; 38(2): 174-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538735

RESUMO

Although hatching from eggs is fundamental for nematode biology it remains poorly understood. For animal-parasitic nematodes in particular, advancement has been slow since the 1980s. Understanding such a crucial life-cycle process would greatly improve the tractability of parasitic nematodes as experimental systems, advance fundamental knowledge, and enable translational research. Here, we review the role of eggs in the nematode life cycle and the current knowledge on the hatching cascade, including the different inducing and contributing factors, and highlight specific areas of the field that remain unknown. We examine how these knowledge gaps could be addressed and discuss their potential impact and application in nematode parasite research, treatment, and control.


Assuntos
Nematoides , Parasitos , Animais , Interações Hospedeiro-Parasita
4.
Nat Biotechnol ; 37(2): 186-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718869

RESUMO

Understanding gut microbiome functions requires cultivated bacteria for experimental validation and reference bacterial genome sequences to interpret metagenome datasets and guide functional analyses. We present the Human Gastrointestinal Bacteria Culture Collection (HBC), a comprehensive set of 737 whole-genome-sequenced bacterial isolates, representing 273 species (105 novel species) from 31 families found in the human gastrointestinal microbiota. The HBC increases the number of bacterial genomes derived from human gastrointestinal microbiota by 37%. The resulting global Human Gastrointestinal Bacteria Genome Collection (HGG) classifies 83% of genera by abundance across 13,490 shotgun-sequenced metagenomic samples, improves taxonomic classification by 61% compared to the Human Microbiome Project (HMP) genome collection and achieves subspecies-level classification for almost 50% of sequences. The improved resource of gastrointestinal bacterial reference sequences circumvents dependence on de novo assembly of metagenomes and enables accurate and cost-effective shotgun metagenomic analyses of human gastrointestinal microbiota.


Assuntos
Genoma Bacteriano , Metagenoma , Metagenômica , Bactérias/classificação , Biologia Computacional/métodos , Mapeamento de Sequências Contíguas , Microbioma Gastrointestinal , Genoma Humano , Humanos , Filogenia , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...