Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Plant J ; 118(6): 2249-2268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430487

RESUMO

Melon (Cucumis melo L.), being under intensive domestication and selective breeding, displays an abundant phenotypic diversity. Wild germplasm with tolerance to stress represents an untapped genetic resource for discovery of disease-resistance genes. To comprehensively characterize resistance genes in melon, we generate a telomere-to-telomere (T2T) and gap-free genome of wild melon accession PI511890 (C. melo var. chito) with a total length of 375.0 Mb and a contig N50 of 31.24 Mb. The complete genome allows us to dissect genome architecture and identify resistance gene analogs. We construct a pan-NLRome using seven melon genomes, which include 208 variable and 18 core nucleotide-binding leucine-rich repeat receptors (NLRs). Multiple disease-related transcriptome analyses indicate that most up-regulated NLRs induced by pathogens are shell or cloud NLRs. The T2T gap-free assembly and the pan-NLRome not only serve as essential resources for genomic studies and molecular breeding of melon but also provide insights into the genome architecture and NLR diversity.


Assuntos
Cucumis melo , Resistência à Doença , Genoma de Planta , Genoma de Planta/genética , Cucumis melo/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Cucurbitaceae/genética
3.
Plant Physiol ; 195(2): 1069-1088, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38330431

RESUMO

Powdery mildew (PM) is one of the most widespread and prevalent diseases that affects a wide range of crops. In cucumber (Cucumis sativus L.), previous forward genetic studies have identified MILDEW RESISTANCE LOCUS O 8 (CsMLO8) as necessary but alone insufficient for cucumber PM resistance (PMR) and suggested the involvement of other members of the CsMLO family. However, the function of other CsMLO family members in cucumber remains largely unknown. Here, we developed a highly efficient multiplex gene editing system in cucumber to generate a series of Csmlo mutants from all the 13 family members. Systematic analysis of these mutants revealed growth effects of these CsMLO family members on development and PMR. Importantly, we obtained the Csmlo1/8/11 triple mutant with complete resistance to PM. Transcriptome and proteome analysis of PM-resistant Csmlo mutants suggested that the kinesin-like calmodulin-binding protein (KCBP)-interacting Ca2+-binding protein (CsKIC), calmodulin-like protein 28 (CsCML28), and Ca2+-dependent protein kinase 11 (CsCPK11)-mediated calcium signaling pathway is involved in PMR. CsMLO8 interacted directly with CsKIC, and the simultaneous silencing of both genes resulted in a phenotype that resembled the silencing of CsKIC alone. Silencing CsCML28 and CsCPK11 increased susceptibility to PM, whereas overexpressing CsCPK11 through genetic transformation enhanced cucumber's PMR, demonstrating their positive regulatory roles in PMR. Given the importance of PMR for cucurbit crops, this research provides unprecedented insights into the function of the proteins encoded by the CsMLO gene family as well as the plant defense response to PM pathogen.


Assuntos
Cucumis sativus , Resistência à Doença , Edição de Genes , Doenças das Plantas , Cucumis sativus/genética , Cucumis sativus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Edição de Genes/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Mutação/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Environ ; 47(6): 1997-2010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379450

RESUMO

Gummy stem blight (GSB), a widespread disease causing great loss to cucurbit production, has become a major threat to melon cultivation. However, the melon-GSB interaction remains largely unknown. Here, full-length transcriptome and widely targeted metabolome were used to investigate the defence responses of resistant (PI511089) and susceptible (Payzawat) melon accessions to GSB pathogen infection at 24 h. The biosynthesis of secondary metabolites and MAPK signalling pathway were specifically enriched for differentially expressed genes in PI511890, while carbohydrate metabolism and amino acid metabolism were specifically enriched in Payzawat. More than 1000 novel genes were identified and MAPK signalling pathway was specifically enriched for them in PI511890. There were 11 793 alternative splicing events involving in the defence response to GSB. Totally, 910 metabolites were identified in Payzawat and PI511890, and flavonoids were the dominant metabolites. Integrated full-length transcriptome and metabolome analysis showed eriodictyol and oxalic acid were the potential marker metabolites for GSB resistance in melon. Moreover, posttranscription regulation was widely involved in the defence response of melon to GSB pathogen infection. These results not only improve our understanding on the interaction between melon and GSB, but also facilitate the genetic improvement of melon with GSB resistance.


Assuntos
Cucurbitaceae , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Metaboloma , Doenças das Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Cucurbitaceae/microbiologia , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Perfilação da Expressão Gênica
5.
Hortic Res ; 10(10): uhad189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915500

RESUMO

Melon is an important horticultural crop with extensive diversity in many horticultural groups. To explore its genomic diversity, it is necessary to assemble more high-quality complete genomes from different melon accessions. Meanwhile, a large number of QTLs have been mapped in several studies. Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning. To address these problems, a telomere-to-telomere (T2T) genome of the elite melon landrace Kuizilikjiz (Cucumis melo L. var. inodorus) was de novo assembled and all the published QTLs were projected onto it in this study. The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was de novo assembled using the combination of short reads, PacBio high-fidelity long reads, Hi-C data, and a high-density genetic map. Each chromosome contained the centromere and telomeres at both ends. A large number of structural variations were observed between Kuizilikjiz and the other published genomes. A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome. Several clustered, co-localized, and overlapped QTLs were determined. Furthermore, 20 stable meta-QTLs were identified, which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes. Collectively, the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.

6.
DNA Res ; 29(5)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961033

RESUMO

Pueraria lobata var. montana (P. montana) belongs to the genus Pueraria and originated in Asia. Compared with its sister P. thomsonii, P. montana has stronger growth vigour and cold-adaption but contains less bioactive metabolites such as puerarin. To promote the investigation of metabolic regulation and genetic improvement of Pueraria, the present study reports a chromosome-level genome of P. montana with length of 978.59 Mb and scaffold N50 of 80.18 Mb. Comparative genomics analysis showed that P. montana possesses smaller genome size than that of P. thomsonii owing to less repeat sequences and duplicated genes. A total of 6,548 and 4,675 variety-specific gene families were identified in P. montana and P. thomsonii, respectively. The identified variety-specific and expanded/contracted gene families related to biosynthesis of bioactive metabolites and microtubules are likely the causes for the different characteristics of metabolism and cold-adaption of P. montana and P. thomsonii. Moreover, a graphic genome was constructed based on 11 P. montana accessions. Total 92 structural variants were identified and most of which are related to stimulus-response. In conclusion, the chromosome-level and graphic genomes of P. montana will not only facilitate the studies of evolution and metabolic regulation, but also promote the breeding of Pueraria.


Assuntos
Pueraria , Ásia , Cromossomos , Montana , Melhoramento Vegetal , Pueraria/química , Pueraria/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...