Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13511, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866817

RESUMO

The growing application of carbon dioxide (CO2) in various environmental and energy fields, including carbon capture and storage (CCS) and several CO2-based enhanced oil recovery (EOR) techniques, highlights the importance of studying the phase equilibria of this gas with water. Therefore, accurate prediction of CO2 solubility in water becomes an important thermodynamic property. This study focused on developing two powerful intelligent models, namely gradient boosting (GBoost) and light gradient boosting machine (LightGBM) that predict CO2 solubility in water with high accuracy. The results revealed the outperformance of the GBoost model with root mean square error (RMSE) and determination coefficient (R2) of 0.137 mol/kg and 0.9976, respectively. The trend analysis demonstrated that the developed models were highly capable of detecting the physical trend of CO2 solubility in water across various pressure and temperature ranges. Moreover, the Leverage technique was employed to identify suspected data points as well as the applicability domain of the proposed models. The results showed that less than 5% of the data points were detected as outliers representing the large applicability domain of intelligent models. The outcome of this research provided insight into the potential of intelligent models in predicting solubility of CO2 in pure water.

2.
Sci Rep ; 14(1): 8666, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622138

RESUMO

Ionic liquids (ILs) are more widely used within the industry than ever before, and accurate models of their physicochemical characteristics are becoming increasingly important during the process optimization. It is especially challenging to simulate the viscosity of ILs since there is no widely agreed explanation of how viscosity is determined in liquids. In this research, genetic programming (GP) and group method of data handling (GMDH) models were used as white-box machine learning approaches to predict the viscosity of pure ILs. These methods were developed based on a large open literature database of 2813 experimental viscosity values from 45 various ILs at different pressures (0.06-298.9 MPa) and temperatures (253.15-573 K). The models were developed based on five, six, and seven inputs, and it was found that all the models with seven inputs provided more accurate results, while the models with five and six inputs had acceptable accuracy and simpler formulas. Based on GMDH and GP proposed approaches, the suggested GMDH model with seven inputs gave the most exact results with an average absolute relative deviation (AARD) of 8.14% and a coefficient of determination (R2) of 0.98. The proposed techniques were compared with theoretical and empirical models available in the literature, and it was displayed that the GMDH model with seven inputs strongly outperforms the existing approaches. The leverage statistical analysis revealed that most of the experimental data were located within the applicability domains of both GMDH and GP models and were of high quality. Trend analysis also illustrated that the GMDH and GP models could follow the expected trends of viscosity with variations in pressure and temperature. In addition, the relevancy factor portrayed that the temperature had the greatest impact on the ILs viscosity. The findings of this study illustrated that the proposed models represented strong alternatives to time-consuming and costly experimental methods of ILs viscosity measurement.

3.
Water Environ Res ; 96(1): e10960, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168046

RESUMO

As an emerging desalination technology, forward osmosis (FO) can potentially become a reliable method to help remedy the current water crisis. Introducing uncomplicated and precise models could help FO systems' optimization. This paper presents the prediction and evaluation of FO systems' membrane flux using various artificial intelligence-based models. Detailed data gathering and cleaning were emphasized because appropriate modeling requires precise inputs. Accumulating data from the original sources, followed by duplicate removal, outlier detection, and feature selection, paved the way to begin modeling. Six models were executed for the prediction task, among which two are tree-based models, two are deep learning models, and two are miscellaneous models. The calculated coefficient of determination (R2 ) of our best model (XGBoost) was 0.992. In conclusion, tree-based models (XGBoost and CatBoost) show more accurate performance than neural networks. Furthermore, in the sensitivity analysis, feed solution (FS) and draw solution (DS) concentrations showed a strong correlation with membrane flux. PRACTITIONER POINTS: The FO membrane flux was predicted using a variety of machine-learning models. Thorough data preprocessing was executed. The XGBoost model showed the best performance, with an R2 of 0.992. Tree-based models outperformed neural networks and other models.


Assuntos
Inteligência Artificial , Purificação da Água , Purificação da Água/métodos , Membranas Artificiais , Osmose , Água
4.
Sci Rep ; 13(1): 20763, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007563

RESUMO

When nanoparticles are dispersed and stabilized in a base-fluid, the resulting nanofluid undergoes considerable changes in its thermophysical properties, which can have a substantial influence on the performance of nanofluid-flow systems. With such necessity and importance, developing a set of mathematical correlations to identify these properties in various conditions can greatly eliminate costly and time-consuming experimental tests. Hence, the current study aims to develop innovative correlations for estimating the specific heat capacity of mono-nanofluids. The accurate estimation of this crucial property can result in the development of more efficient and effective thermal systems, such as heat exchangers, solar collectors, microchannel cooling systems, etc. In this regard, four powerful soft-computing techniques were considered, including Generalized Reduced Gradient (GRG), Genetic Programming (GP), Gene Expression Programming (GEP), and Group Method of Data Handling (GMDH). These techniques were implemented on 2084 experimental data-points, corresponding to ten different kinds of nanoparticles and six different kinds of base-fluids, collected from previous research sources. Eventually, four distinct correlations with high accuracy were provided, and their outputs were compared to three correlations that had previously been published by other researchers. These novel correlations are applicable to various oxide-based mono-nanofluids for a broad range of independent variable values. The superiority of newly developed correlations was proven through various statistical and graphical error analyses. The GMDH-based correlation revealed the best performance with an Average Absolute Percent Relative Error (AAPRE) of 2.4163% and a Coefficient of Determination (R2) of 0.9743. At last, a leverage statistical approach was employed to identify the GMDH technique's application domain and outlier data, and also, a sensitivity analysis was carried out to clarify the degree of dependence between input and output variables.

5.
Sci Rep ; 13(1): 11966, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488224

RESUMO

Ionic liquids (ILs) have drawn much attention due to their extensive applications and environment-friendly nature. Refractive index prediction is valuable for ILs quality control and property characterization. This paper aims to predict refractive indices of pure ILs and identify factors influencing refractive index changes. Six chemical structure-based machine learning models called eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), Convolutional Neural Network (CNN), Adaptive Boosting-Decision Tree (Ada-DT), and Adaptive Boosting-Support Vector Machine (Ada-SVM) were developed to achieve this goal. An enormous dataset containing 6098 data points of 483 different ILs was exploited to train the machine learning models. Each data point's chemical substructures, temperature, and wavelength were considered for the models' inputs. Including wavelength as input is unprecedented among predictions done by machine learning methods. The results show that the best model was CatBoost, followed by XGBoost, LightGBM, Ada-DT, CNN, and Ada-SVM. The R2 and average absolute percent relative error (AAPRE) of the best model were 0.9973 and 0.0545, respectively. Comparing this study's models with the literature shows two advantages regarding the dataset's abundance and prediction accuracy. This study also reveals that the presence of the -F substructure in an ionic liquid has the most influence on its refractive index among all inputs. It was also found that the refractive index of imidazolium-based ILs increases with increasing alkyl chain length. In conclusion, chemical structure-based machine learning methods provide promising insights into predicting the refractive index of ILs in terms of accuracy and comprehensiveness.

6.
Sci Rep ; 13(1): 7946, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193679

RESUMO

In the context of gas processing and carbon sequestration, an adequate understanding of the solubility of acid gases in ionic liquids (ILs) under various thermodynamic circumstances is crucial. A poisonous, combustible, and acidic gas that can cause environmental damage is hydrogen sulfide (H2S). ILs are good choices for appropriate solvents in gas separation procedures. In this work, a variety of machine learning techniques, such as white-box machine learning, deep learning, and ensemble learning, were established to determine the solubility of H2S in ILs. The white-box models are group method of data handling (GMDH) and genetic programming (GP), the deep learning approach is deep belief network (DBN) and extreme gradient boosting (XGBoost) was selected as an ensemble approach. The models were established utilizing an extensive database with 1516 data points on the H2S solubility in 37 ILs throughout an extensive pressure and temperature range. Seven input variables, including temperature (T), pressure (P), two critical variables such as temperature (Tc) and pressure (Pc), acentric factor (ω), boiling temperature (Tb), and molecular weight (Mw), were used in these models; the output was the solubility of H2S. The findings show that the XGBoost model, with statistical parameters such as an average absolute percent relative error (AAPRE) of 1.14%, root mean square error (RMSE) of 0.002, standard deviation (SD) of 0.01, and a determination coefficient (R2) of 0.99, provides more precise calculations for H2S solubility in ILs. The sensitivity assessment demonstrated that temperature and pressure had the highest negative and highest positive affect on the H2S solubility in ILs, respectively. The Taylor diagram, cumulative frequency plot, cross-plot, and error bar all demonstrated the high effectiveness, accuracy, and reality of the XGBoost approach for predicting the H2S solubility in various ILs. The leverage analysis shows that the majority of the data points are experimentally reliable and just a small number of data points are found beyond the application domain of the XGBoost paradigm. Beyond these statistical results, some chemical structure effects were evaluated. First, it was shown that the lengthening of the cation alkyl chain enhances the H2S solubility in ILs. As another chemical structure effect, it was shown that higher fluorine content in anion leads to higher solubility in ILs. These phenomena were confirmed by experimental data and the model results. Connecting solubility data to the chemical structure of ILs, the results of this study can further assist to find appropriate ILs for specialized processes (based on the process conditions) as solvents for H2S.

7.
Sci Rep ; 12(1): 20859, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460814

RESUMO

Recently, electrochemical reduction of CO2 into value-added fuels has been noticed as a promising process to decrease CO2 emissions. The development of such technology is strongly depended upon tuning the surface properties of the applied electrocatalysts. Considering the high cost and time-consuming experimental investigations, computational methods, particularly machine learning algorithms, can be the appropriate approach for efficiently screening the metal alloys as the electrocatalysts. In doing so, to represent the surface properties of the electrocatalysts numerically, d-band theory-based electronic features and intrinsic properties obtained from density functional theory (DFT) calculations were used as descriptors. Accordingly, a dataset containg 258 data points was extracted from the DFT method to use in machine learning method. The primary purpose of this study is to establish a new model through machine learning methods; namely, adaptive neuro-fuzzy inference system (ANFIS) combined with particle swarm optimization (PSO) and genetic algorithm (GA) for the prediction of *CO (the key intermediate) adsorption energy as the efficiency metric. The developed ANFIS-PSO and ANFIS-GA showed excellent performance with RMSE of 0.0411 and 0.0383, respectively, the minimum errors reported so far in this field. Additionally, the sensitivity analysis showed that the center and the filling of the d-band are the most determining parameters for the electrocatalyst surface reactivity. The present study conveniently indicates the potential and value of machine learning in directing the experimental efforts in alloy system electrocatalysts for CO2 reduction.

8.
Sci Rep ; 12(1): 14943, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056055

RESUMO

Knowledge of the solubilities of hydrocarbon components of natural gas in pure water and aqueous electrolyte solutions is important in terms of engineering designs and environmental aspects. In the current work, six machine-learning algorithms, namely Random Forest, Extra Tree, adaptive boosting support vector regression (AdaBoost-SVR), Decision Tree, group method of data handling (GMDH), and genetic programming (GP) were proposed for estimating the solubility of pure and mixture of methane, ethane, propane, and n-butane gases in pure water and aqueous electrolyte systems. To this end, a huge database of hydrocarbon gases solubility (1836 experimental data points) was prepared over extensive ranges of operating temperature (273-637 K) and pressure (0.051-113.27 MPa). Two different approaches including eight and five inputs were adopted for modeling. Moreover, three famous equations of state (EOSs), namely Peng-Robinson (PR), Valderrama modification of the Patel-Teja (VPT), and Soave-Redlich-Kwong (SRK) were used in comparison with machine-learning models. The AdaBoost-SVR models developed with eight and five inputs outperform the other models proposed in this study, EOSs, and available intelligence models in predicting the solubility of mixtures or/and pure hydrocarbon gases in pure water and aqueous electrolyte systems up to high-pressure and high-temperature conditions having average absolute relative error values of 10.65% and 12.02%, respectively, along with determination coefficient of 0.9999. Among the EOSs, VPT, SRK, and PR were ranked in terms of good predictions, respectively. Also, the two mathematical correlations developed with GP and GMDH had satisfactory results and can provide accurate and quick estimates. According to sensitivity analysis, the temperature and pressure had the greatest effect on hydrocarbon gases' solubility. Additionally, increasing the ionic strength of the solution and the pseudo-critical temperature of the gas mixture decreases the solubilities of hydrocarbon gases in aqueous electrolyte systems. Eventually, the Leverage approach has revealed the validity of the hydrocarbon solubility databank and the high credit of the AdaBoost-SVR models in estimating the solubilities of hydrocarbon gases in aqueous solutions.


Assuntos
Gases , Água , Eletrólitos , Gases/análise , Hidrocarbonetos , Aprendizado de Máquina , Sais , Solubilidade
9.
Sci Rep ; 12(1): 14276, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995904

RESUMO

Ionic liquids (ILs) have emerged as suitable options for gas storage applications over the past decade. Consequently, accurate prediction of gas solubility in ILs is crucial for their application in the industry. In this study, four intelligent techniques including Extreme Learning Machine (ELM), Deep Belief Network (DBN), Multivariate Adaptive Regression Splines (MARS), and Boosting-Support Vector Regression (Boost-SVR) have been proposed to estimate the solubility of some gaseous hydrocarbons in ILs based on two distinct methods. In the first method, the thermodynamic properties of hydrocarbons and ILs were used as input parameters, while in the second method, the chemical structure of ILs and hydrocarbons along with temperature and pressure were used. The results show that in the first method, the DBN model with root mean square error (RMSE) and coefficient of determination (R2) values of 0.0054 and 0.9961, respectively, and in the second method, the DBN model with RMSE and R2 values of 0.0065 and 0.9943, respectively, have the most accurate predictions. To evaluate the performance of intelligent models, the obtained results were compared with previous studies and equations of the state including Peng-Robinson (PR), Soave-Redlich-Kwong (SRK), Redlich-Kwong (RK), and Zudkevitch-Joffe (ZJ). Findings show that intelligent models have high accuracy compared to equations of state. Finally, the investigation of the effect of different factors such as alkyl chain length, type of anion and cation, pressure, temperature, and type of hydrocarbon on the solubility of gaseous hydrocarbons in ILs shows that pressure and temperature have a direct and inverse effect on increasing the solubility of gaseous hydrocarbons in ILs, respectively. Also, the evaluation of the effect of hydrocarbon type shows that increasing the molecular weight of hydrocarbons increases the solubility of gaseous hydrocarbons in ILs.


Assuntos
Líquidos Iônicos , Gases , Hidrocarbonetos , Líquidos Iônicos/química , Aprendizado de Máquina , Solubilidade
10.
Sci Rep ; 12(1): 6615, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459922

RESUMO

Tetracyclines (TCs) have been extensively used for humans and animal diseases treatment and livestock growth promotion. The consumption of such antibiotics has been ever-growing nowadays due to various bacterial infections and other pathologic conditions, resulting in more discharge into the aquatic environments. This brings threats to ecosystems and human bodies. Up to now, several attempts have been made to reduce TC amounts in the wastewater, among which photocatalysis, an advanced oxidation process, is known as an eco-friendly and efficient technology. In this regard, metal organic frameworks (MOFs) have been known as the promising materials as photocatalysts. Thus, studying TC photocatalytic degradation by MOFs would help scientists and engineers optimize the process in terms of effective parameters. Nevertheless, the costly and time-consuming experimental methods, having instrumental errors, encouraged the authors to use the computational method for a more comprehensive assessment. In doing so, a wide-ranging databank including 374 experimental data points was gathered from the literature. A powerful machine learning method of Gaussian process regression (GPR) model with four kernel functions was proposed to estimate the TC degradation in terms of MOFs features (surface area and pore volume) and operational parameters (illumination time, catalyst dosage, TC concentration, pH). The GPR models performed quite well, among which GPR-Matern model shows the most accurate performance with R2, MRE, MSE, RMSE, and STD of 0.981, 12.29, 18.03, 4.25, and 3.33, respectively. In addition, an analysis of sensitivity was carried out to assess the effect of the inputs on the TC photodegradation by MOFs. It revealed that the illumination time and the surface area play a significant role in the decomposition activity.


Assuntos
Compostos Heterocíclicos , Estruturas Metalorgânicas , Antibacterianos , Inteligência Artificial , Ecossistema , Estruturas Metalorgânicas/química , Tetraciclina , Tetraciclinas
11.
Sci Total Environ ; 810: 152228, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890675

RESUMO

We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.


Assuntos
Incrustação Biológica , Nanocompostos , Nanopartículas , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Polímeros , Dióxido de Silício
12.
Sci Rep ; 11(1): 24403, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937872

RESUMO

Accurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in a petroleum refinery. In this work, nitrogen (N2) solubility in normal alkanes as the major constituents of crude oil was modeled using five representative machine learning (ML) models namely gradient boosting with categorical features support (CatBoost), random forest, light gradient boosting machine (LightGBM), k-nearest neighbors (k-NN), and extreme gradient boosting (XGBoost). A large solubility databank containing 1982 data points was utilized to establish the models for predicting N2 solubility in normal alkanes as a function of pressure, temperature, and molecular weight of normal alkanes over broad ranges of operating pressure (0.0212-69.12 MPa) and temperature (91-703 K). The molecular weight range of normal alkanes was from 16 to 507 g/mol. Also, five equations of state (EOSs) including Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), Zudkevitch-Joffe (ZJ), Peng-Robinson (PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) were used comparatively with the ML models to estimate N2 solubility in normal alkanes. Results revealed that the CatBoost model is the most precise model in this work with a root mean square error of 0.0147 and coefficient of determination of 0.9943. ZJ EOS also provided the best estimates for the N2 solubility in normal alkanes among the EOSs. Lastly, the results of relevancy factor analysis indicated that pressure has the greatest influence on N2 solubility in normal alkanes and the N2 solubility increases with increasing the molecular weight of normal alkanes.

13.
Sci Rep ; 11(1): 23064, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845328

RESUMO

Simulation of thermal properties of graphene hetero-nanosheets is a key step in understanding their performance in nano-electronics where thermal loads and shocks are highly likely. Herein we combine graphene and boron-carbide nanosheets (BC3N) heterogeneous structures to obtain BC3N-graphene hetero-nanosheet (BC3GrHs) as a model semiconductor with tunable properties. Poor thermal properties of such heterostructures would curb their long-term practice. BC3GrHs may be imperfect with grain boundaries comprising non-hexagonal rings, heptagons, and pentagons as topological defects. Therefore, a realistic picture of the thermal properties of BC3GrHs necessitates consideration of grain boundaries of heptagon-pentagon defect pairs. Herein thermal properties of BC3GrHs with various defects were evaluated applying molecular dynamic (MD) simulation. First, temperature profiles along BC3GrHs interface with symmetric and asymmetric pentagon-heptagon pairs at 300 K, ΔT = 40 K, and zero strain were compared. Next, the effect of temperature, strain, and temperature gradient (ΔT) on Kaptiza resistance (interfacial thermal resistance at the grain boundary) was visualized. It was found that Kapitza resistance increases upon an increase of defect density in the grain boundary. Besides, among symmetric grain boundaries, 5-7-6-6 and 5-7-5-7 defect pairs showed the lowest (2 × 10-10 m2 K W-1) and highest (4.9 × 10-10 m2 K W-1) values of Kapitza resistance, respectively. Regarding parameters affecting Kapitza resistance, increased temperature and strain caused the rise and drop in Kaptiza thermal resistance, respectively. However, lengthier nanosheets had lower Kapitza thermal resistance. Moreover, changes in temperature gradient had a negligible effect on the Kapitza resistance.

14.
Sci Rep ; 11(1): 17911, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504169

RESUMO

Due to industrial development, designing and optimal operation of processes in chemical and petroleum processing plants require accurate estimation of the hydrogen solubility in various hydrocarbons. Equations of state (EOSs) are limited in accurately predicting hydrogen solubility, especially at high-pressure or/and high-temperature conditions, which may lead to energy waste and a potential safety hazard in plants. In this paper, five robust machine learning models including extreme gradient boosting (XGBoost), adaptive boosting support vector regression (AdaBoost-SVR), gradient boosting with categorical features support (CatBoost), light gradient boosting machine (LightGBM), and multi-layer perceptron (MLP) optimized by Levenberg-Marquardt (LM) algorithm were implemented for estimating the hydrogen solubility in hydrocarbons. To this end, a databank including 919 experimental data points of hydrogen solubility in 26 various hydrocarbons was gathered from 48 different systems in a broad range of operating temperatures (213-623 K) and pressures (0.1-25.5 MPa). The hydrocarbons are from six different families including alkane, alkene, cycloalkane, aromatic, polycyclic aromatic, and terpene. The carbon number of hydrocarbons is ranging from 4 to 46 corresponding to a molecular weight range of 58.12-647.2 g/mol. Molecular weight, critical pressure, and critical temperature of solvents along with pressure and temperature operating conditions were selected as input parameters to the models. The XGBoost model best fits all the experimental solubility data with a root mean square error (RMSE) of 0.0007 and an average absolute percent relative error (AAPRE) of 1.81%. Also, the proposed models for estimating the solubility of hydrogen in hydrocarbons were compared with five EOSs including Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), Redlich-Kwong (RK), Zudkevitch-Joffe (ZJ), and perturbed-chain statistical associating fluid theory (PC-SAFT). The XGBoost model introduced in this study is a promising model that can be applied as an efficient estimator for hydrogen solubility in various hydrocarbons and is capable of being utilized in the chemical and petroleum industries.

15.
Sci Rep ; 11(1): 15710, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344995

RESUMO

In recent years, new developments in controlling greenhouse gas emissions have been implemented to address the global climate conservation concern. Indeed, the earth's average temperature is being increased mainly due to burning fossil fuels, explicitly releasing high amounts of CO2 into the atmosphere. Therefore, effective capture techniques are needed to reduce the concentration of CO2. In this regard, metal organic frameworks (MOFs) have been known as the promising materials for CO2 adsorption. Hence, study on the impact of the adsorption conditions along with the MOFs structural properties on their ability in the CO2 adsorption will open new doors for their further application in CO2 separation technologies as well. However, the high cost of the corresponding experimental study together with the instrument's error, render the use of computational methods quite beneficial. Therefore, the present study proposes a Gaussian process regression model with four kernel functions to estimate the CO2 adsorption in terms of pressure, temperature, pore volume, and surface area of MOFs. In doing so, 506 CO2 uptake values in the literature have been collected and assessed. The proposed GPR models performed very well in which the exponential kernel function, was shown as the best predictive tool with R2 value of 1. Also, the sensitivity analysis was employed to investigate the effectiveness of input variables on the CO2 adsorption, through which it was determined that pressure is the most determining parameter. As the main result, the accurate estimate of CO2 adsorption by different MOFs is obtained by briefly employing the artificial intelligence concept tools.

16.
Sci Rep ; 11(1): 3958, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597690

RESUMO

Molybdenum disulfide (MoS2) is considered as a promising noble-metal-free electrocatalyst for the Hydrogen Evolution Reaction (HER). However, to effectively employ such material in the HER process, the corresponding electrocatalytic activity should be comparable or even higher than that of Pt-based materials. Thus, efforts in structural design of MoS2 electrocatalyst should be taken to enhance the respective physico-chemical properties, particularly, the electronic properties. Indeed, no report has yet appeared about the possibility of an HER electrocatalytic association between the MoS2 and carbon nanotubes (CNT). Hence, this paper investigates the synergistic electrocatalytic activity of MoS2/ CNT heterostructure for HER by Density Functional Theory simulations. The characteristics of the heterostructure, including density of states, binding energies, charge transfer, bandgap structure and minimum-energy path for the HER process were discussed. It was found that regardless of its configuration, CNT is bound to MoS2 with an atomic interlayer gap of 3.37 Å and binding energy of 0.467 eV per carbon atom, suggesting a weak interaction between CNT and MoS2. In addition, the energy barrier of HER process was calculated lower in MoS2/CNT, 0.024 eV, than in the MoS2 monolayer, 0.067 eV. Thus, the study elaborately predicts that the proposed heterostructure improves the intrinsic electrocatalytic activity of MoS2.

17.
RSC Adv ; 11(10): 5479-5486, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35423090

RESUMO

Carbon-based materials are broadly used as the active component of electric double layer capacitors (EDLCs) in energy storage systems with a high power density. Most of the reported computational studies have investigated the electrochemical properties under equilibrium conditions, limiting the direct and practical use of the results to design electrochemical energy systems. In the present study, for the first time, the experimental data from more than 300 published papers have been extracted and then analyzed through an optimized support vector machine (SVM) by a grey wolf optimization (GWO) algorithm to obtain a correlation between carbon-based structural features and EDLC performance. Several structural features, including calculated pore size, specific surface area, N-doping level, I D/I G ratio, and applied potential window were selected as the input variables to determine their impact on the respective capacitances. Sensitivity analysis, which has only been performed in this study for approximating the EDLC capacitance, indicated that the specific surface area of the carbon-based supercapacitors is of the greatest effect on the corresponding capacitance. The proposed SVM-GWO, with an R 2 value of 0.92, showed more accuracy than all the other proposed machine learning (ML) models employed for this purpose.

18.
Polymers (Basel) ; 12(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443636

RESUMO

The cure kinetics analysis of thermoset polymer composites gives useful information about their properties. In this work, two types of layered double hydroxide (LDH) consisting of Mg2+ and Zn2+ as divalent metal ions and CO32- as an anion intercalating agent were synthesized and functionalized with hydroxyapatite (HA) to make a potential thermal resistant nanocomposite. The curing potential of the synthesized nanoplatelets in the epoxy resin was then studied, both qualitatively and quantitatively, in terms of the Cure Index as well as using isoconversional methods, working on the basis of nonisothermal differential scanning calorimetry (DSC) data. Fourier transform infrared spectroscopy (FTIR) was used along with X-ray diffraction (XRD) and thermogravimetric analysis (TGA) to characterize the obtained LDH structures. The FTIR band at 3542 cm-1 corresponded to the O-H stretching vibration of the interlayer water molecules, while the weak band observed at 1640 cm-1 was attributed to the bending vibration of the H-O of the interlayer water. The characteristic band of carbonated hydroxyapatite was observed at 1456 cm-1. In the XRD patterns, the well-defined (00l) reflections, i.e., (003), (006), and (110), supported LDH basal reflections. Nanocomposites prepared at 0.1 wt % were examined for curing potential by the Cure Index as a qualitative criterion that elucidated a Poor cure state for epoxy/LDH nanocomposites. Moreover, the curing kinetics parameters including the activation energy (Eα), reaction order, and the frequency factor were computed using the Friedman and Kissinger-Akahira-Sunose (KAS) isoconversional methods. The evolution of Eα confirmed the inhibitory role of the LDH in the crosslinking reactions. The average value of Eα for the neat epoxy was 54.37 kJ/mol based on the KAS method, whereas the average values were 59.94 and 59.05 kJ/mol for the epoxy containing Zn-Al-CO3-HA and Mg Zn-Al-CO3-HA, respectively. Overall, it was concluded that the developed LDH structures hindered the epoxy curing reactions.

19.
Polymers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316492

RESUMO

The epoxy/clay nanocomposites have been extensively considered over years because of their low cost and excellent performance. Halloysite nanotubes (HNTs) are unique 1D natural nanofillers with a hollow tubular shape and high aspect ratio. To tackle poor dispersion of the pristine halloysite (P-HNT) in the epoxy matrix, alkali surface-treated HNT (A-HNT) and epoxy silane functionalized HNT (F-HNT) were developed and cured with epoxy resin. Nonisothermal differential scanning calorimetry (DSC) analyses were performed on epoxy nanocomposites containing 0.1 wt.% of P-HNT, A-HNT, and F-HNT. Quantitative analysis of the cure kinetics of epoxy/amine system made by isoconversional Kissinger-Akahira-Sunose (KAS) and Friedman methods made possible calculation of the activation energy (Eα) as a function of conversion (α). The activation energy gradually increased by increasing α due to the diffusion-control mechanism. However, the average value of Eα for nanocomposites was lower comparably, suggesting autocatalytic curing mechanism. Detailed assessment revealed that autocatalytic reaction degree, m increased at low heating rate from 0.107 for neat epoxy/amine system to 0.908 and 0.24 for epoxy/P-HNT and epoxy/A-HNT nanocomposites, respectively, whereas epoxy/F-HNT system had m value of 0.072 as a signature of dominance of non-catalytic reactions. At high heating rates, a similar behavior but not that significant was observed due to the accelerated gelation in the system. In fact, by the introduction of nanotubes the mobility of curing moieties decreased resulting in some deviation of experimental cure rate values from the predicted values obtained using KAS and Friedman methods.

20.
Molecules ; 26(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396329

RESUMO

Accurate determination of the physicochemical characteristics of ionic liquids (ILs), especially viscosity, at widespread operating conditions is of a vital role for various fields. In this study, the viscosity of pure ILs is modeled using three approaches: (I) a simple group contribution method based on temperature, pressure, boiling temperature, acentric factor, molecular weight, critical temperature, critical pressure, and critical volume; (II) a model based on thermodynamic properties, pressure, and temperature; and (III) a model based on chemical structure, pressure, and temperature. Furthermore, Eyring's absolute rate theory is used to predict viscosity based on boiling temperature and temperature. To develop Model (I), a simple correlation was applied, while for Models (II) and (III), smart approaches such as multilayer perceptron networks optimized by a Levenberg-Marquardt algorithm (MLP-LMA) and Bayesian Regularization (MLP-BR), decision tree (DT), and least square support vector machine optimized by bat algorithm (BAT-LSSVM) were utilized to establish robust and accurate predictive paradigms. These approaches were implemented using a large database consisting of 2813 experimental viscosity points from 45 different ILs under an extensive range of pressure and temperature. Afterward, the four most accurate models were selected to construct a committee machine intelligent system (CMIS). Eyring's theory's results to predict the viscosity demonstrated that although the theory is not precise, its simplicity is still beneficial. The proposed CMIS model provides the most precise responses with an absolute average relative deviation (AARD) of less than 4% for predicting the viscosity of ILs based on Model (II) and (III). Lastly, the applicability domain of the CMIS model and the quality of experimental data were assessed through the Leverage statistical method. It is concluded that intelligent-based predictive models are powerful alternatives for time-consuming and expensive experimental processes of the ILs viscosity measurement.


Assuntos
Algoritmos , Inteligência Artificial , Teorema de Bayes , Líquidos Iônicos/química , Solventes/química , Máquina de Vetores de Suporte , Temperatura , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...