Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(636): eabl9945, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294256

RESUMO

Hematopoietic cell transplantation after myeloablative conditioning has been used to treat various genetic metabolic syndromes but is largely ineffective in diseases affecting the brain presumably due to poor and variable myeloid cell incorporation into the central nervous system. Here, we developed and characterized a near-complete and homogeneous replacement of microglia with bone marrow cells in mice without the need for genetic manipulation of donor or host. The high chimerism resulted from a competitive advantage of scarce donor cells during microglia repopulation rather than enhanced recruitment from the periphery. Hematopoietic stem cells, but not immediate myeloid or monocyte progenitor cells, contained full microglia replacement potency equivalent to whole bone marrow. To explore its therapeutic potential, we applied microglia replacement to a mouse model for Prosaposin deficiency, which is characterized by a progressive neurodegeneration phenotype. We found a reduction of cerebellar neurodegeneration and gliosis in treated brains, improvement of motor and balance impairment, and life span extension even with treatment started in young adulthood. This proof-of-concept study suggests that efficient microglia replacement may have therapeutic efficacy for a variety of neurological diseases.


Assuntos
Encefalopatias , Transplante de Células-Tronco Hematopoéticas , Animais , Células da Medula Óssea , Encéfalo , Sistema Nervoso Central , Camundongos , Microglia
2.
Nat Methods ; 17(7): 694-697, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451475

RESUMO

Femtosecond lasers at fixed wavelengths above 1,000 nm are powerful, stable and inexpensive, making them promising sources for two-photon microscopy. Biosensors optimized for these wavelengths are needed for both next-generation microscopes and affordable turn-key systems. Here we report jYCaMP1, a yellow variant of the calcium indicator jGCaMP7 that outperforms its parent in mice and flies at excitation wavelengths above 1,000 nm and enables improved two-color calcium imaging with red fluorescent protein-based indicators.


Assuntos
Cálcio/análise , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Drosophila , Feminino , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular , Córtex Somatossensorial/química
3.
Elife ; 82019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30663981

RESUMO

Accurate lineage reconstruction of mammalian pre-implantation development is essential for inferring the earliest cell fate decisions. Lineage tracing using global fluorescence labeling techniques is complicated by increasing cell density and rapid embryo rotation, which hampers automatic alignment and accurate cell tracking of obtained four-dimensional imaging data sets. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (pr-pcFPs) to simultaneously visualize the global green and the photoconverted red population in order to minimize tracking uncertainties over prolonged time windows. Confined primed conversion of H2B-pr-mEosFP-labeled nuclei combined with light-sheet imaging greatly facilitates segmentation, classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Using green and red labels as fiducial markers, we computationally correct for rotational and translational drift, reduce overall data size, and accomplish high-fidelity lineage tracing even for increased imaging time intervals - addressing major concerns in the field of volumetric embryo imaging.


Assuntos
Blastocisto , Luz , Animais , Linhagem da Célula , Desenvolvimento Embrionário , Fluorescência , Camundongos
4.
Chemistry ; 24(33): 8268-8274, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29430743

RESUMO

In 2015, a novel way to convert photoconvertible fluorescent proteins was reported that uses the intercept of blue and far-red light instead of traditional violet or near-UV light illumination. This Minireview describes and contrasts this distinct two-step mechanism termed primed conversion with traditional photoconversion. We provide a comprehensive overview of what is known to date about primed conversion and focus on the molecular requirements for it to take place. We provide examples of its application to axially confined photoconversion in complex tissues as well as super-resolution microscopy. Further, we describe why and when it is useful, including its advantages and disadvantages, and give an insight into potential future development in the field.

5.
Angew Chem Int Ed Engl ; 56(38): 11628-11633, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28661566

RESUMO

Green-to-red photoconvertible fluorescent proteins (pcFPs) are powerful tools for super-resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion not only by the traditional 400-nm illumination but also by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far-red/near-infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we uncover the molecular mechanism of primed conversion by reporting the intermediate "primed" state to be a triplet dark state formed by intersystem crossing. We show that formation of this state can be influenced by the introduction of serine or threonine at sequence position 69 (Eos notation) and use this knowledge to create "pr"- (for primed convertible) variants of most known green-to-red pcFPs.


Assuntos
Cor , Proteínas Luminescentes/química , Engenharia de Proteínas , Microscopia de Fluorescência , Processos Fotoquímicos
6.
Nat Protoc ; 11(12): 2419-2431, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27809312

RESUMO

The application of green-to-red photoconvertible fluorescent proteins (PCFPs) for in vivo studies in complex 3D tissue structures has remained limited because traditional near-UV photoconversion is not confined in the axial dimension, and photomodulation using axially confined, pulsed near-IR (NIR) lasers has proven inefficient. Confined primed conversion is a dual-wavelength continuous-wave (CW) illumination method that is capable of axially confined green-to-red photoconversion. Here we present a protocol to implement this technique with a commercial confocal laser-scanning microscope (CLSM); evaluate its performance on an in vitro setup; and apply primed conversion for in vivo labeling of single cells in developing zebrafish and mouse preimplantation embryos expressing the green-to-red photoconvertible protein Dendra2. The implementation requires a basic understanding of laser-scanning microscopy, and it can be performed within a single day once the required filter cube is manufactured.


Assuntos
Luz , Proteínas Luminescentes/metabolismo , Microscopia Confocal/métodos , Coloração e Rotulagem/métodos , Animais , Camundongos , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...