Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10146, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698024

RESUMO

The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.


Assuntos
Endossomos , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Lisossomos/metabolismo , Subunidades Proteicas/metabolismo , Autofagia , Autofagossomos/metabolismo , Células HeLa , Ligação Proteica
3.
Biol Futur ; 73(2): 171-185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35501574

RESUMO

In this review, we present recent scientific advances about integrin trafficking in the endo-lysosomal system. In the last few years, plenty of new information has emerged about the endo-lysosomal system, integrins, and the mechanism, how exactly the intracellular trafficking of integrins is regulated. We review the internalization and recycling pathways of integrins, and we provide information about the possible ways of lysosomal degradation through the endosomal and autophagic system. The regulation of integrin internalization and recycling proved to be a complex process worth studying. Trafficking of integrins, together with the regulation of their gene expression, defines cellular adhesion and cellular migration through bidirectional signalization and ligand binding. Thus, any malfunction in this system can potentially (but not necessarily) lead to tumorigenesis or metastasis. Hence, extensive examinations of integrins in the endo-lysosomal system raise the possibility to identify potential new medical targets. Furthermore, this knowledge can also serve as a basis for further determination of integrin signaling- and adhesion-related processes.


Assuntos
Integrinas , Lisossomos , Adesão Celular/fisiologia , Endossomos/metabolismo , Integrinas/metabolismo , Lisossomos/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...