Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Int Immunopharmacol ; 115: 109622, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577156

RESUMO

Immunostimulatory monoclonal antibodies (IS-mAb) have been proven to enhance the therapeutic effectiveness of various anticancer therapy. In the present investigation, we launched a separate combinational therapy for the treatment of triple-negative breast cancer (TNBC) using cuttlefish ink-based nanoparticles (CINPs) for photothermal therapy (PTT) and anti-OX40 antibody. Our goal was to increase the therapeutic response to the disease. CINPs were characterized by their physicochemical properties, which revealed that they had a hydrodynamic diameter ranging from 128 to 148 nm, a negative surface charge, and a high photothermal conversion efficiency under both in vitro and in vivo settings. In TNBC model, we evaluated the therapeutic effectiveness of the following groups: CINP-PTT + anti-OX40 Ab (G1), CINPs-PTT (G2), CINPs + anti-OX40 Ab (G3), anti-OX40 (G4) or PBS (G5). In each case, we assessed the efficacy of these groups against one another. The intratumor administration of all of the substances and therapies was performed. CINP-PTT + anti-OX40 Ab and CINP + anti-OX40 Ab (particularly CINP-PTT + anti-OX40 Ab) induced significant tumor regression in treated (breast) and non-treated (flank) tumor, and completely inhibited lung metastasis, thereby inducing a higher survival rate in mice in comparison to CINP-PTT, anti-OX40 Ab, or PBS. This was the case because in CINPs-treated tumors, particularly those treated with CINPs-PTT, intratumoral injection of CINPs increased the frequency of OX40, CD8 double-positive T cells. CINPs improved the conversion of the macrophage phenotype from M2 to M1 in vitro, which is significant from an immunological point of view. In addition, anti-OX40 Ab combined with CINPs or, more specifically, CINPs-PPT produced a larger frequency of preexisting and newly formed tumor-specific CD8 T cells, as well as an enhanced frequency of CD8 T cells infiltrating non-treated tumors, in comparison to respective monotherapies. When the data were taken into consideration as a whole, it seemed that CINPs-based PTT may effectively enhance the antitumor response effectiveness of anti-OX40 Ab.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Tinta , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Nanopartículas/uso terapêutico , Nanopartículas/química , Decapodiformes , Linhagem Celular Tumoral
3.
Appl Microbiol Biotechnol ; 105(1): 77-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33215260

RESUMO

Chimeric virus-like particles (VLPs) were developed as a candidate for allergen-specific immunotherapy. In this study, hepatitis B core antigen (HBcAg) that genetically fused to Chenopodium album polcalcin (Che a 3)-derived peptide was expressed in E. coli BL21, purified, and VLP formation was evaluated using native agarose gel electrophoresis (NAGE) and transmission electron microscopy (TEM). Chimeric HBc VLPs were characterized in terms of their reactivity to IgE, the induction of blocking IgG and allergen-specific IgE, basophil-activating capacity, and Th1-type immune responses. Results from IgE reactivity and basophil activation test showed that chimeric HBc VLPs lack IgE-binding capacity and basophil degranulation activity. Although chimeric HBc VLPs induced the highest level of efficient polcalcin-specific IgG antibody in comparison to those induced by recombinant Che a 3 (rChe a 3) mixed either with HBc VLPs or alum, they triggered the lowest level of polcalcin-specific IgE in mice following immunization. Furthermore, in comparison to the other antigens, chimeric HBc VLPs produced a polcalcin-specific Th1 cell response. Taken together, genetically fusion of allergen derivatives to HBc VLPs, in comparison to a mix of them, may be a more effective way to induce appropriate immune responses in allergen-specific immunotherapy. KEY POINTS: • The insertion of allergen-derived peptide into major insertion region (MIR) of hepatitis B virus core (HBc) antigen resulted in nanoparticles displaying allergen-derived peptide upon its expression in prokaryotic host. • The resultant VLPs (chimeric HBc VLPs) did not exhibit IgE reactivity with allergic patients' sera and were not able to degranulate basophils. • Chimeric HBc VLPs dramatically improved protective IgG antibody response compared with those induced by allergen mixed either with HBc VLPs or alum. • Chimeric HBc VLPs induced Th1 responses that were counterparts of Th2 responses (allergic). • Chimeric HBc VLPs increased IgG2a/ IgG1 ratio and the level of IFN-γ compared to those induced by allergen mixed with either HBc VLPs or alum. Graphical Abstract.


Assuntos
Alérgenos , Escherichia coli , Alérgenos/genética , Animais , Escherichia coli/genética , Antígenos do Núcleo do Vírus da Hepatite B/genética , Humanos , Imunização , Imunoglobulina E , Camundongos , Camundongos Endogâmicos BALB C
4.
Iran J Allergy Asthma Immunol ; 19(3): 276-288, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615661

RESUMO

Chenopodium album polcalcin (Che a 3) is characterized as a major cause of cross-reactivity inallergic patients to the Chenopodiaceae family. Therefore, the present study was conducted to develop a hypoallergenic Che a 3 derivatives as the candidate vaccine for type 1 allergy. Four derivatives were generated from Che a 3. The first was a mosaic peptide derivative computationally identified in Che a 3 which was coupled to keyhole limpet hemocyanin (KLH). The second one was a mutant Che a 3, and the other two derivatives included N- and C-terminal halves of Che a 3 that both coupled to KLH. The IgE-binding capacity of Che a 3 and its derivatives and also their ability to induce there combinant Che a 3 (rChe a 3)-specific IgG antibody, were determined using the enzyme-linked immune sorbent assay (ELISA). Moreover, the lymphopro liferative capacity of rChe a 3 or its derivatives and their pro-inflammatory cytokine response interleukin (IL)-5 and IL-13 were measured in the human peripheral blood mononuclear cells (PBMCs). Among all derivatives, the N-terminal half peptide and mosaic peptide exhibited the lowest IgE-binding capacity. In addition, in comparison to other antigens, KLH-coupled mosaic peptide induced the highest level of the recombinant Che a 3 (rChe a 3)-specific IgG antibody and ther Che a 3 specific-blocking IgG antibody in mice. Moreover, the mosaic peptide lacked lymphopro liferative capacity and down-regulated expression of pro-allergic IL-5 and IL-13 cytokines. Therefore, a peptide-carrier fusion vaccine, composed of the B-cell epitope coupled to the carrier, could be considered as one of the promising hypoallergenic vaccines to treat patients with allergy to low molecular weight allergens such as Che a 3.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas , Adulto , Animais , Feminino , Humanos , Imunoglobulina E/sangue , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Rinite Alérgica Sazonal/imunologia
5.
Infect Drug Resist ; 12: 1629-1647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354312

RESUMO

Purpose: Piscidin-1 is an effective antimicrobial peptide (AMP) against a variety of microbes. However, its toxicity has been reported as a limitation for its potential therapeutic applications. The toxicity of piscidin-1 may be related to the long nonpolar face of this AMP. Here, we investigated different piscidin-1 analogs to reach a peptide with the reduced toxicity. Material and methods: In vitro and in vivo antibacterial activity and toxicity of piscidin-1 analogs generated by replacement of isoleucine at the border (I9) or the center (I16) of the nonpolar face of piscidin-1 by alanine or lysine were investigated. Results: The results indicated that among all peptides, piscidin-1 with the highest HPLC retention time (RT) and I16K-piscidin-1 with the lowest RT had the highest and lowest cytotoxicity, respectively. Although I16K-piscidin-1 possessed the same MIC value as the parent peptide (piscidin-1) and other analogs, I16K-piscidin-1 exhibited a higher rapidity of bactericidal action at 5×MIC. The ß-galactosidase leakage and propidium iodide staining assays indicated a higher pore-forming capacity of I16K-piscidin-1 relative to the parent peptide (piscidin-1). Taken together, RT is suggested to have a direct association with the toxicity and an inverse association with the rapidity of bactericidal action and pore-forming capacity. After infection of mice with clinical colistin-resistant Acinetobacter baumannii or clinical methicillin-resistant Staphylococcus aureus strains, treatment with I16K-piscidin-1, but not piscidin-1 and other analogs, resulted in a significantly stronger bactericidal potency. Furthermore, I16K-piscidin-1 exhibited the lowest in vivo toxicity.  Conclusion: Overall, in vitro and in vivo comparison of piscidin-1 and its analogs together documented that replacement of isoleucine at the center of the nonpolar face of piscidin-1(I16) by lysine leads to not only a decrease in toxicity potential but also an increase in bactericidal potential.

7.
PLoS One ; 13(10): e0206578, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30365554

RESUMO

BACKGROUND: The global crisis of antibiotic resistance increases the demand for the new promising alternative drugs such as antimicrobial peptides (AMPs). Accordingly, we have described a new, previously unrecognized effective AMP, named dicentracin-like, from Asian sea bass and characterized its antimicrobial activity by comparison with moronecidin. METHODOLOGY/ RESULTS: Gene expression analysis demonstrated the expression of dicentracin-like peptide in tissues of the immune system such as the skin and the head kidney, which is an important endocrine and lymphoid organ. Moronecidin and dicentracin-like exhibited a higher antibacterial activity against gram-positive bacteria relative to gram-negative ones, while both peptides showed a greater binding ability to gram-negative bacteria compared to gram-positive ones. This contradiction between antibacterial activity and binding affinity may be related to the outer membrane from gram-negative bacteria. Compared with moronecidin, dicentracin-like peptide showed more potent binding ability to all gram-positive and gram-negative bacteria. In addition, dicentracin-like peptide exhibited a high antibacterial activity against the investigated microorganisms, except against Staphylococcus aureus. A direct relationship was found between the binding affinity/cationicity and the antibiofilm activity of the peptides wherein, an elevation in pH corresponded to a decrease in their antibiofilm property. Time-kill kinetics analysis against clinical Acinetobacter baumannii isolate indicated that bactericidal effect of dicentracin-like and moronecidin at inhibitory concentration (1XMIC) was observed after 4 and 6 hours, respectively, while bactericidal effect of both AMPs at concentration of 2XMIC was observed after 2 hours. Dicentracin-like peptide showed higher inhibitory activity at subinhibitory concentration (1/2XMIC), relative to moronecidin. Compared with moronecidin, dicentracin-like peptide possessed greater binding affinity to bacteria at high salt concentration, as well as at alkaline pH; In addition, dicentracin-like exhibited a higher antibiofilm activity in comparison to moronecidin even at alkaline pH. Hemolytic analysis against human RBC revealed that hemolytic activity of moronecidin was more potent than that of dicentracin-like, which is consistent with its greater non-polar face hydrophobicity. CONCLUSIONS: In the present study, In Silico comparative sequence analysis and antimicrobial characterization led to identify a new, previously unrecognized antimicrobial function for named dicentracin-like peptide by comparison with moronecidin, representing a possible template for designing new effective AMPs and improving known ones.

8.
Mar Biotechnol (NY) ; 20(6): 718-728, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30039186

RESUMO

Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Smegmamorpha/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/efeitos adversos , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...