Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857262

RESUMO

Flow-induced vibrations (FIV) were considered as unwanted vibrations analogous to noise. However, in a recent trend, the energy of these vibrations can be harvested and converted to electrical power. In this study, the potential of FIV as a source of renewable energy is highlighted through experimental and numerical analyses. The experimental study was conducted on an elastically mounted circular cylinder using helical and leaf springs in the wind tunnel. The Reynolds number (Re) varied between 2300-16000. The motion of the cylinder was restricted in all directions except the transverse direction. The micro-electromechanical system (MEMS) was mounted on the leaf spring to harvest the mechanical energy. Numerical simulations were also performed with SST k-ω turbulence model to supplement the experiments and were found to be in good agreement with the experimental results. The flow separation and vortex shedding induce aerodynamic forces in the cylinder causing it to vibrate. 2S vortex shedding pattern was observed in all of the cases in this study. The maximum dimensionless amplitude of vibration (A/D) obtained was 0.084 and 0.068 experimentally and numerically, respectively. The results showed that the region of interest is the lock-in region where maximum amplitude of vibration is observed and, therefore, the maximum power output. The piezoelectric voltage and power output were recorded for different reduced velocities (Ur = 1-10) at different resistance values in the circuit. It was observed that as the amplitude of oscillation of the cylinder increases, the voltage and power output of the MEMS increases due to high strain in piezoelectric transducer. The maximum output voltage of 0.6V was observed at Ur = 4.95 for an open circuit, i.e., for a circuit with the resistance value of infinity. As the resistance value reduced, a drop in voltage output was observed. Maximum power of 10.5µW was recorded at Ur = 4.95 for a circuit resistance of 100Ω.


Assuntos
Transdutores , Vibração , Modelos Teóricos , Energia Renovável , Sistemas Microeletromecânicos/instrumentação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...