Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605083

RESUMO

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Assuntos
Edição de Genes , Rim , Animais , Suínos , Humanos , Animais Geneticamente Modificados , Xenoenxertos , Transplante Heterólogo , Rejeição de Enxerto/genética
2.
Am J Physiol Renal Physiol ; 326(5): F839-F854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38450434

RESUMO

Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.


Assuntos
Ácidos Aristolóquicos , Diferenciação Celular , Rim , Células T de Memória , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Masculino , Ácidos Aristolóquicos/toxicidade , Rim/imunologia , Rim/metabolismo , Rim/patologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Transgênicos , Memória Imunológica , Modelos Animais de Doenças , Camundongos
4.
J Pharmacol Exp Ther ; 388(2): 605-612, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37699712

RESUMO

Arsenicals are deadly chemical warfare agents that primarily cause death through systemic capillary fluid leakage and hypovolemic shock. Arsenical exposure is also known to cause acute kidney injury, a condition that contributes to arsenical-associated death due to the necessity of the kidney in maintaining whole-body fluid homeostasis. Because of the global health risk that arsenicals pose, a nuanced understanding of how arsenical exposure can lead to kidney injury is needed. We used a nontargeted transcriptional approach to evaluate the effects of cutaneous exposure to phenylarsine oxide, a common arsenical, in a murine model. Here we identified an upregulation of metabolic pathways such as fatty acid oxidation, fatty acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR)-α signaling in proximal tubule epithelial cell and endothelial cell clusters. We also revealed highly upregulated genes such as Zbtb16, Cyp4a14, and Pdk4, which are involved in metabolism and metabolic switching and may serve as future therapeutic targets. The ability of arsenicals to inhibit enzymes such as pyruvate dehydrogenase has been previously described in vitro. This, along with our own data, led us to conclude that arsenical-induced acute kidney injury may be due to a metabolic impairment in proximal tubule and endothelial cells and that ameliorating these metabolic effects may lead to the development of life-saving therapies. SIGNIFICANCE STATEMENT: In this study, we demonstrate that cutaneous arsenical exposure leads to a transcriptional shift enhancing fatty acid metabolism in kidney cells, indicating that metabolic alterations might mechanistically link topical arsenical exposure to acute kidney injury. Targeting metabolic pathways may generate promising novel therapeutic approaches in combating arsenical-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Arsenicais , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Rim/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Arsenicais/efeitos adversos , Arsenicais/metabolismo
6.
Res Sq ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711785

RESUMO

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. We transplanted a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and studied the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells were uncommon in the porcine kidney cortex early after xenotransplantation and consisted of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages expressed genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft was detected. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression is sufficient to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.

7.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36066976

RESUMO

The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney-resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury. While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA-Seq (scRNA-Seq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNA-Seq and spatial transcriptomics revealed 7 distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature, suggesting distinct functions. Specific protein markers were identified for 2 clusters, allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation was lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs was not fully restored for at least 28 days after injury. The change in KRM localization confirmed a long-hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Macrófagos/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Citometria de Fluxo , Insuficiência Renal Crônica/metabolismo
8.
Front Med (Lausanne) ; 9: 894521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160140

RESUMO

Acute kidney injury (AKI) is a serious complication of rhabdomyolysis that significantly impacts survival. Myoglobin released from the damaged muscle accumulates in the kidney, causing heme iron-mediated oxidative stress, tubular cell death, and inflammation. In response to injury, myeloid cells, specifically neutrophils and macrophages, infiltrate the kidneys, and mediate response to injury. Ferritin, comprised of ferritin light chain and ferritin heavy chain (FtH), is vital for intracellular iron handling. Given the dominant role of macrophages and heme-iron burden in the pathogenesis of rhabdomyolysis, we studied the functional role of myeloid FtH in rhabdomyolysis-induced AKI and subsequent fibrosis. Using two models of rhabdomyolysis induced AKI, we found that during the acute phase, myeloid FtH deletion did not impact rhabdomyolysis-induced kidney injury, cell death or cell proliferation, suggesting that tubular heme burden is the dominant injury mechanism. We also determined that, while the kidney architecture was markedly improved after 28 days, tubular casts persisted in the kidneys, suggesting sustained damage or incomplete recovery. We further showed that rhabdomyolysis resulted in an abundance of disparate intra-renal immune cell populations, such that myeloid populations dominated during the acute phase and lymphoid populations dominated in the chronic phase. Fibrotic remodeling was induced in both genotypes at 7 days post-injury but continued to progress only in wild-type mice. This was accompanied by an increase in expression of pro-fibrogenic and immunomodulatory proteins, such as transforming growth factor-ß, S100A8, and tumor necrosis factor-α. Taken together, we found that while the initial injury response to heme burden was similar, myeloid FtH deficiency was associated with lesser interstitial fibrosis. Future studies are warranted to determine whether this differential fibrotic remodeling will render these animals more susceptible to a second AKI insult or progress to chronic kidney disease at an accelerated pace.

9.
Kidney360 ; 3(1): 28-36, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35368565

RESUMO

Background: AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and mortality from COVID-19. Here, we tested the hypothesis that kidney alterations induced by COVID-19-associated AKI could be detected in cells collected from urine. Methods: We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight hospitalized patients with COVID-19 with (n=5) or without AKI (n=3) as well as four patients with non-COVID-19 AKI (n=4) to assess differences in cellular composition and gene expression during AKI. Results: Analysis of 30,076 cells revealed a diverse array of cell types, most of which were kidney, urothelial, and immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression was highest in urothelial cells among cell types recovered. Notably, in one patient, we detected SARS-CoV-2 viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-inflammatory pathways. Conclusions: We successfully performed scRNAseq on urinary sediment from hospitalized patients with COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes both injured and uninjured kidney cells. Additionally, we provide preliminary evidence of direct infection of urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/etiologia , COVID-19/complicações , Humanos , Rim , SARS-CoV-2 , Análise de Sequência de RNA
10.
Am J Physiol Renal Physiol ; 321(4): F548-F557, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486399

RESUMO

Chronic kidney disease (CKD) is characterized by the progressive functional loss of nephrons and hypertension (HTN). Some antihypertensive regimens attenuate the progression of CKD (blockers of the renin-angiotensin system). Although studies have suggested that calcium channel blocker (CCB) therapy mitigates the decline in renal function in humans with essential HTN, there are few long-term clinical studies that have determined the impact of CCBs in patients with hypertensive CKD. Dihydropyridine (DHP) or L-type CCBs preferentially vasodilate the afferent arteriole and have been associated with glomerular HTN and increases in proteinuria in animal models with low renal function. Small clinical studies in vulnerable populations with renal disease such as African Americans, children, and diabetics have also suggested that DHP CCBs exacerbate glomerular injury, which questions the renoprotective effect of this class of antihypertensive drug. We used an established integrative mathematical model of human physiology, HumMod, to test the hypothesis that DHP CCB therapy exacerbates pressure-induced glomerular injury in hypertensive CKD. Over a simulation of 3 yr, CCB therapy reduced mean blood pressure by 14-16 mmHg in HTN both with and without CKD. Both impaired tubuloglomerular feedback and low baseline renal function exacerbated glomerular pressure, glomerulosclerosis, and the decline in renal function during L-type CCB treatment. However, simulating CCB therapy that inhibited both L- and T-type calcium channels increased efferent arteriolar vasodilation and alleviated glomerular damage. These simulations support the evidence that DHP (L-type) CCBs potentiate glomerular HTN during CKD and suggest that T/L-type CCBs are valuable in proteinuric renal disease treatment.NEW & NOTEWORTHY Our physiological model replicates clinical trial results and provides unique insights into possible mechanisms that play a role in glomerular injury and hypertensive kidney disease progression during chronic CCB therapy. Specifically, these simulations predict the temporal changes in renal function with CCB treatment and demonstrate important roles for tubuloglomerular feedback and efferent arteriolar conductance in the control of chronic kidney disease progression.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo T/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Glomérulos Renais/irrigação sanguínea , Modelos Biológicos , Insuficiência Renal Crônica/tratamento farmacológico , Vasodilatadores/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Bloqueadores dos Canais de Cálcio/efeitos adversos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Simulação por Computador , Humanos , Hipertensão/diagnóstico , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Vasodilatadores/efeitos adversos
11.
Am J Physiol Cell Physiol ; 321(4): C694-C703, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406903

RESUMO

The human placenta is of vital importance for proper nutrient and waste exchange, immune regulation, and overall fetal health and growth. Specifically, the extracellular matrix (ECM) of placental syncytiotrophoblasts, which extends outward from the placental chorionic villi into maternal blood, acts on a molecular level to regulate and maintain this barrier. Importantly, placental barrier dysfunction has been linked to diseases of pregnancy such as preeclampsia and intrauterine growth restriction. To help facilitate our understanding of the interface and develop therapeutics to repair or prevent dysfunction of the placental barrier, in vitro models of the placental ECM would be of great value. In this study, we aimed to characterize the ECM of an in vitro model of the placental barrier using syncytialized BeWo choriocarcinoma cells. Syncytialization caused a marked change in syndecans, integral proteoglycans of the ECM, which matched observations of in vivo placental ECM. Syndecan-1 expression increased greatly and predominated the other variants. Barrier function of the ECM, as measured by electric cell-substrate impedance sensing (ECIS), increased significantly during and after syncytialization, whereas the ability of THP-1 monocytes to adhere to syncytialized BeWos was greatly reduced compared with nonsyncytialized controls. Furthermore, ECIS measurements indicated that ECM degradation with matrix metalloproteinase-9 (MMP-9), but not heparanase, decreased barrier function. This decrease in ECIS-measured barrier function was not associated with any changes in THP-1 adherence to syncytialized BeWos treated with heparanase or MMP-9. Thus, syncytialization of BeWos provides a physiologically accurate placental ECM with a barrier function matching that seen in vivo.


Assuntos
Matriz Extracelular/metabolismo , Placentação , Sindecana-1/metabolismo , Trofoblastos/metabolismo , Movimento Celular , Impedância Elétrica , Matriz Extracelular/efeitos dos fármacos , Feminino , Glucuronidase/farmacologia , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Monócitos/metabolismo , Permeabilidade , Placentação/efeitos dos fármacos , Gravidez , Sindecana-1/genética , Células THP-1 , Trofoblastos/efeitos dos fármacos , Regulação para Cima
12.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R508-R518, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501896

RESUMO

The endothelial glycocalyx is a specialized extracellular matrix that covers the apical side of vascular endothelial cells, projecting into the lumen of blood vessels. The composition of the glycocalyx has been studied in great detail, and it is known to be composed of a mixture of proteoglycans, glycosaminoglycans, and glycoproteins. Although this structure was once believed to be a passive physical barrier, it is now recognized as a multifunctional and dynamic structure that participates in many vascular processes, including but not limited to vascular permeability, inflammation, thrombosis, mechanotransduction, and cytokine signaling. Because of its participation in many physiological and pathophysiological states, comprehensive knowledge of the glycocalyx will aid future vascular biologists in their research. With that in mind, this review discusses the biochemical structure of the glycocalyx and its function in many vascular physiological processes. We also briefly review a more recent discovery in glycocalyx biology, the placental glycocalyx.


Assuntos
Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Placenta/irrigação sanguínea , Animais , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Células Endoteliais/patologia , Feminino , Glicocálix/patologia , Humanos , Permeabilidade , Circulação Placentária , Gravidez , Transdução de Sinais
13.
Biol Sex Differ ; 11(1): 34, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600401

RESUMO

Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is an anti-angiogenic protein which is secreted by numerous cell types and acts as a decoy receptor for the angiogenic protein vascular endothelial growth factor (VEGF). Despite its physiologic importance in maintaining angiogenic balance, excess sFlt-1 levels are associated with the pathogenesis of many diseases, especially those with angiogenic imbalance, endothelial dysfunction, and hypertension. Although sFlt-1 is a soluble protein, it contains a binding site for the extracellular matrix component heparan sulfate. This allows cells to retain and localize sFlt-1 in order to prevent excessive VEGF signaling. During pregnancy, placental syncytiotrophoblasts develop a large extracellular matrix which contains significant amounts of heparan sulfate. Consequently, the placenta becomes a potential storage site for large amounts of sFlt-1 bound to extracellular heparan sulfate. Additionally, it should be noted that sFlt-1 can bind to the anticoagulant unfractionated heparin due to its molecular mimicry to heparan sulfate. However, it remains unknown whether unfractionated heparin can compete with heparan sulfate for binding of localized sFlt-1. In this study, we hypothesized that administration of unfractionated heparin would displace and solubilize placental extracellular matrix(ECM)-bound sFlt-1. If unfractionated heparin can displace this large reservoir of sFlt-1 in the placenta and mobilized it into the maternal circulation, we should be able to observe its effects on maternal angiogenic balance and blood pressure. To test this hypothesis, we utilized in vitro, ex vivo, and in vivo methods. Using the BeWo placental trophoblast cell line, we observed increased sFlt-1 in the media of cells treated with unfractionated heparin compared to controls. The increase in media sFlt-1 was found in conjunction with decreased localized cellular Flt (sFlt-1 and Flt-1) as measured by total cell fluorescence. Similar results were observed using ex vivo placental villous explants treated with unfractionated heparin. Real-time quantitative PCR of the explants showed no change in sFlt-1 or heparanase-1 mRNA expression, eliminating increased production and enzymatic cleavage of heparan sulfate as causes for sFlt-1 media increase. Timed-pregnant rats given a continuous infusion of unfractionated heparin exhibited an increased mean arterial pressure as well as decreased bioavailable VEGF compared to vehicle-treated animals. These data demonstrate that chronic unfractionated heparin treatment is able to displace matrix-bound sFlt-1 into the maternal circulation to such a degree that mean arterial pressure is significantly affected. Here we have shown that the placental ECM is a storage site for large quantities of sFlt-1, and that it should be carefully considered in future studies concerning angiogenic balance in pregnancy.


Assuntos
Matriz Extracelular/efeitos dos fármacos , Heparina/farmacologia , Placenta/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Humanos , Placenta/metabolismo , Gravidez , Ratos Sprague-Dawley , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
14.
Am J Physiol Renal Physiol ; 315(2): F323-F331, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631357

RESUMO

Obesity and increased lipid availability have been implicated in the development and progression of chronic kidney disease. One of the major sites of renal lipid accumulation is in the proximal tubule cells of the kidney, suggesting that these cells may be susceptible to lipotoxicity. We previously demonstrated that loss of hepatic biliverdin reductase A (BVRA) causes fat accumulation in livers of mice on a high-fat diet. To determine the role of BVRA in mouse proximal tubule cells, we generated a CRISPR targeting BVRA for a knockout in mouse proximal tubule cells (BVRA KO). The BVRA KO cells had significantly less metabolic potential and mitochondrial respiration, which was exacerbated by treatment with palmitic acid, a saturated fatty acid. The BVRA KO cells also showed increased intracellular triglycerides which were associated with higher fatty acid uptake gene cluster of differentiation 36 as well as increased de novo lipogenesis as measured by higher neutral lipids. Additionally, neutrophil gelatinase-associated lipocalin 1 expression, annexin-V FITC staining, and lactate dehydrogenase assays all demonstrated that BVRA KO cells are more sensitive to palmitic acid-induced lipotoxicity than wild-type cells. Phosphorylation of BAD which plays a role in cell survival pathways, was significantly reduced in palmitic acid-treated BVRA KO cells. These data demonstrate the protective role of BVRA in proximal tubule cells against saturated fatty acid-induced lipotoxicity and suggest that activating BVRA could provide a benefit in protecting from obesity-induced kidney injury.


Assuntos
Apoptose/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Ácido Palmítico/toxicidade , Animais , Antígenos CD36/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Deleção de Genes , Edição de Genes/métodos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , L-Lactato Desidrogenase/metabolismo , Lipocalina-2/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Ácido Palmítico/metabolismo , Fosforilação , Triglicerídeos/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
15.
React Oxyg Species (Apex) ; 5(13): 35-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29379885

RESUMO

Biliverdin reductase (BVR) is the enzyme responsible for the last step in the production of bilirubin from the breakdown of heme. Bilirubin is one of the most potent antioxidant molecules in the body. Monitoring BVR activity is essential in studying the antioxidant capacity of cells and tissues. Traditional methods of determining BVR activity have relied on the measurement of bilirubin converted from biliverdin using absorbance spectroscopy. The approach has limited sensitivity and requires large quantities of cells or tissues. We have developed a novel fluorescence-based method utilizing the eel protein, UnaG, for the detection of bilirubin produced by BVR. The UnaG protein only fluoresces by the induction of bilirubin. We have also used this approach to measure intracellular bilirubin content of cultured cells. We validated this assay using cell lysates from mouse liver and immortalized murine hepatic cell line (Hepa1c1c7) and kidney cell line (MCT) in which BVR isoform A (BVRA) was either knocked out via CRISPR or stably overexpressed by lentivirus. Also, we tested the method using previously reported putative BVRA inhibitors, Closantel and Ebselen. These studies show a new method for measuring bilirubin intracellularly and in lysates.

16.
Int J Mol Sci ; 18(3)2017 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-28287466

RESUMO

Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males.


Assuntos
Adipócitos/metabolismo , Heme Oxigenase-1/deficiência , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Alelos , Animais , Biomarcadores , Glicemia , Composição Corporal/genética , Peso Corporal , Dieta Hiperlipídica , Ativação Enzimática , Jejum , Feminino , Marcação de Genes , Heme Oxigenase-1/metabolismo , Hiperinsulinismo/sangue , Hiperinsulinismo/genética , Mediadores da Inflamação/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade , Especificidade de Órgãos/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA