Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354896

RESUMO

As a part of an ongoing interest in identifying environmentally friendly alternatives to synthetic dyes and in using liquid CO2 as a waterless medium for applying the resulting colorants to textiles, our attention turned to yellow-to-red biocolorants produced by Cortinarius sanguineus fungus. The three principal target anthraquinone colorants (emodin, dermocybin, and dermorubin) were isolated from the fungal bodies using a liquid-liquid separation method and characterized using 700 MHz NMR and high-resolution mass spectral analyses. Following structure confirmations, the three colorants were examined for dyeing synthetic polyester (PET) textile fibers in supercritical CO2. We found that all three biocolorants were suitable for dyeing PET fibers using this technology, and our attention then turned to determining their toxicological properties. As emodin has shown mutagenic potential in previous studies, we concentrated our present toxicity studies on dermocybin and dermorubin. Both colorants were non-mutagenic, presented low cellular toxicity, and did not induce skin sensitization. Taken together, our results indicate that dermocybin and dermorubin possess the technical and toxicological properties needed for consideration as synthetic dye alternatives under conditions that are free of wastewater production.

2.
Sci Total Environ ; 795: 148806, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243001

RESUMO

Previous studies have demonstrated the presence of precursors and coupling agents in wastewater from hair dyeing processes. The complex reaction involved in the oxidation of these compounds can generate extremely hazardous sub-products, leading to an increase in the mutagenicity and toxicity of wastewater. Without proper treatment, this highly toxic wastewater may find its way into the drinking water treatment plant. The present work aimed to investigate the main products generated after the oxidation reaction involving p-toluenediamine (PTD) and p-aminophenol (PAP) - precursors that widely used in the composition of commercial permanent hair dyes, under experimental conditions close to the routine hair dyeing process (in the presence and absence of hydrogen peroxide in ammoniacal medium), using spectroscopic techniques. The study also investigated the mutagenicity and toxicity of the products formed in the hairdressing wash water and conducted detection analysis to determine the presence of the precursors and Bandrowski's Base Derivative (BBD) in samples of wastewater, surface and drinking water using HPLC-DAD and linear voltammetry techniques. Based on this investigation, we identified several PTD and PAP self-oxidation products and eleven sub-products derived from the reaction between PTD and PAP. Assays conducted using Salmonella typhimurium YG1041, with and without activation-induced rat liver metabolism (S9), indicated mutagenicity of the reaction products in concentrations above 10.0 µg µL-1. The concentrations of PTD, PAP, and several reactions and oxidation products of these precursors were detected in wastewater and water samples.


Assuntos
Tinturas para Cabelo , Aminofenóis , Animais , Tinturas para Cabelo/toxicidade , Testes de Mutagenicidade , Mutagênicos/toxicidade , Estresse Oxidativo , Fenilenodiaminas , Ratos
3.
J Hazard Mater ; 387: 122000, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31901848

RESUMO

This work reports the study of oxidation reaction of p-aminophenol (PAP) in ammoniacal medium in dissolved atmospheric oxygen and hydrogen peroxide, simulating the process of hair dyeing with permanent dyes. The products formed, which included semi-quinoneimine radical, quinoneimine, dimers, trimers and tetramers, were identified by mass spectrometry, infrared spectroscopy, UV-vis spectrophotometry, and nuclear magnetic resonance of hydrogen. The process was found to involve an autoxidation mechanism. The mutagenicity of the products was carried out by Salmonella Typhimurium YG1041 assay, and the results indicated no mutagenic properties. The presence of PAP and its oxidative products in samples of wastewater collected from hairdressing salon effluent (WW), raw river water (RRW), and water inlet and outlet of drinking water treatment plant (DWTP) was analyzed by HPLC-DAD. PAP was detected in the collected samples of WW, water samples from DWTP (before and after treatment), at concentrations of 2.1 ± 0.5 mg L-1, 1.9 ± 0.3 × 10-3 mg L-1 and 1.3 ± 0.2 × 10-3 mg L-1, respectively. The reaction products, including dimers, trimers and tetramers were identified only in the WW sample; this shows that both the precursor in the sample and its derivatives were released into the wastewater.


Assuntos
Aminofenóis/química , Água Potável/análise , Tinturas para Cabelo/química , Águas Residuárias/análise , Poluentes Químicos da Água/química , Aminofenóis/análise , Aminofenóis/toxicidade , Tinturas para Cabelo/análise , Tinturas para Cabelo/toxicidade , Testes de Mutagenicidade , Oxirredução , Oxigênio/química , Rios/química , Salmonella typhimurium/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 685: 911-922, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247438

RESUMO

The present work investigated the autoxidation reaction of p-toluenediamine (PTD) - a precursor - widely used in permanent hair dyeing formulation, under experimental conditions close to the hair dyeing process (oxygen and/or peroxide in ammoniacal medium), by chromatographic and spectroscopic techniques. In additional, evaluated the mutagenicity of the PTD oxidation products and the presence of PTD and this products in wastewater from beauty salon, as well as in surface water and drinking water using HPLC coupled to a diode array detector and linear scan voltammetry. Through this study, it was possible the identification of semi-quinonediimine, quinonediimine, dimers (derived from toluenediamine), and trimer radical identified as Bandrowski's Base derivative (BBD) formed during autoxidation of PTD. Salmonella Typhimurium YG1041 assay with and without metabolic activation induced rat-liver (S9) indicated mutagenic activity for BBD. Levels of PTD were determined by the standard addition method in samples collected from the wastewater of a beauty salon, as well as from the water before and after treatment in a drinking water treatment plant (DWTP) reached concentrations of 2.08 ±â€¯0.21, 2.36 ±â€¯0.10 × 10-3, and 1.77 ±â€¯0.13 × 10-3 mg L-1, respectively. In addition, linear sweep voltammetry was used to monitor the BBD found at the concentration of 1.59 ±â€¯0.35 mg L-1 in wastewater collected from the beauty salon.


Assuntos
Mutagênicos/toxicidade , Fenilenodiaminas/química , Poluentes Químicos da Água/química , Barbearia , Peróxido de Hidrogênio , Testes de Mutagenicidade , Mutagênicos/análise , Mutagênicos/química , Oxirredução , Fenilenodiaminas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Food Chem Toxicol ; 68: 307-15, 2014 06.
Artigo em Inglês | MEDLINE | ID: mdl-24704040

RESUMO

The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30min of irradiation, when a dye solution 1×10(-5)molL(-1) was submitted to an energy dose of 37.8Jcm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34 µg/plate [DOSAGE ERROR CORRECTED] and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9.


Assuntos
Corantes de Alimentos/química , Tartrazina/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Corantes de Alimentos/toxicidade , Concentração de Íons de Hidrogênio , Testes de Mutagenicidade , Mutagênicos/análise , Mutagênicos/toxicidade , Fotólise , Salmonella typhimurium/efeitos dos fármacos , Espectrometria de Massas em Tandem , Tartrazina/toxicidade , Raios Ultravioleta
7.
Environ Mol Mutagen ; 55(6): 510-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24578285

RESUMO

The Salmonella/microsome assay is the most used assay for the evaluation of air particulate matter (PM) mutagenicity and a positive correlation between strain TA98 responses and benzo[a]pyrene (B[a]P) levels in PM has been found. However, it seems that the major causes of PM mutagenicity in this assay are the nitro and oxy-PAHs. Salmonella YG5161, a 30-times more responsive strain to B[a]P has been developed. To verify if YG5161 strain was sufficiently sensitive to detect mutagenicity associated with B[a]P mutagenicity, PM samples were collected in Brazil and Sweden, extracted with toluene and tested in the Salmonella/microsome microsuspension assay. PAHs and B[a]P were determined and the extracts were tested with YG5161 and its parental strain TA1538. The extracts were also tested with YG1041 and its parental strain TA98. For sensitivity comparisons, we tested B[a]P and 1-nitropyrene (1-NP) using the same conditions. The minimal effective dose of B[a]P was 155 ng/plate for TA1538 and 7 ng/plate for YG5161. Although the maximum tested dose, 10 m(3) /plate containing 9 ng of B[a]P in the case of Brazilian sample, was sufficient to elicit a response in YG5161, mutagenicity was detected at a dose as low as 1 m(3) /plate (0.9 ng). This is probably caused by nitro-compounds that have been shown to be even more potent than B[a]P for YG5161. It seems that the mutagenicity of B[a]P present in PM is not detectable even with the use of YG5161 unless more efficient separation to remove the nitro-compounds from the PAH extract is performed.


Assuntos
Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Salmonella/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Brasil , Relação Dose-Resposta a Droga , Microssomos/efeitos dos fármacos , Pirenos/toxicidade , Especificidade da Espécie , Suécia , Tolueno
8.
Sci Total Environ ; 442: 302-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23178834

RESUMO

Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1.


Assuntos
Compostos Azo/análise , Cloro/química , Corantes/análise , Desinfecção/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Animais , Compostos Azo/toxicidade , Cromatografia Líquida de Alta Pressão , Corantes/toxicidade , Daphnia/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Testes de Toxicidade Aguda , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...