Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 246, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831449

RESUMO

BACKGROUND: Arthropods vector a multitude of human disease-causing organisms, and their geographic ranges are shifting rapidly in response to changing climatic conditions. This is, in turn, altering the landscape of disease risk for human populations that are brought into novel contact with the vectors and the diseases they carry. Sand flies in the genera Lutzomyia and Pintomyia are vectors of serious disease-causing agents such as Leishmania (the etiological agent of leishmaniasis) and may be expanding their range in the face of climate change. Understanding the climatic conditions that vector species both tolerate physiologically and prefer behaviorally is critical to predicting the direction and magnitude of range expansions and the resulting impacts on human health. Temperature and humidity are key factors that determine the geographic extent of many arthropods, including vector species. METHODS: We characterized the habitat of two species of sand flies, Lutzomyia longipalpis and Pintomyia evansi. Additionally, we studied two behavioral factors of thermal fitness-thermal and humidity preference in two species of sand flies alongside a key aspect of physiological tolerance-desiccation resistance. RESULTS: We found that Lu. longipalpis is found at cooler and drier conditions than Pi. evansi. Our results also show significant interspecific differences in both behavioral traits, with Pi. evansi preferring warmer, more humid conditions than Lu. longipalpis. Finally, we found that Lu. longipalpis shows greater tolerance to extreme low humidity, and that this is especially pronounced in males of the species. CONCLUSIONS: Taken together, our results suggest that temperature and humidity conditions are key aspects of the climatic niche of Lutzomyia and Pintomyia sand flies and underscore the value of integrative studies of climatic tolerance and preference in vector biology.


Assuntos
Ecossistema , Umidade , Psychodidae , Temperatura , Animais , Psychodidae/fisiologia , Psychodidae/classificação , Feminino , Masculino , Insetos Vetores/fisiologia
2.
Indian J Microbiol ; 61(3): 348-354, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34295000

RESUMO

Wolbachia is an obligate intracellular bacterium with a high frequency of infection and a continental distribution in arthropods and nematodes. This endosymbiont can induce various reproductive phenotypes in their hosts and has been previously found naturally in several pests including thrips (Thripidae). These insects cause physical fruit damage and economic losses in avocado. The presence of Wolbachia was evaluated for the first time in avocado thrips populations of Frankliniella sp. and Scirtothrips hansoni sp.n. from eastern Antioquia. DNA from adult thrips individuals was used to assess the detection of Wolbachia by amplifying a fragment (600 bp) of the Wolbachia major surface protein (wsp) gene. Results confirmed the presence of two new Wolbachia strains in these two thrips species, with a higher percentage of natural infection in S. hansoni sp.n. The first Wolbachia species was found in Frankliniella sp. and belongs to supergroup A and the second was detected in S. hansoni sp.n. and is part of supergroup B. Wolbachia was more frequently found in females (32.73%), and only found in one male. Analysis of phylogenetic relationships, suggests that the two new Wolbachia sequences (wFran: Frankliniella and wShan: Scirtothrips hansoni) detected here represent two new groups for this endosymbiont. The haplotype network shows the presence of two possible haplotypes for each strain. Future studies to evaluate the possible use of Wolbachia as a control agent in avocado thrips are necessary. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00951-5.

3.
PeerJ ; 6: e4307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472996

RESUMO

The endangered marine gastropod, Lobatus gigas, is an important fishery resource in the Caribbean region. Microbiological and parasitological research of this species have been poorly addressed despite its role in ecological fitness, conservation status and prevention of potential pathogenic infections. This study identified taxonomic groups associated with orange colored protrusions in the muscle of queen conchs using histological analysis, 454 pyrosequencing, and a combination of PCR amplification and automated Sanger sequencing. The molecular approaches indicate that the etiological agent of the muscle protrusions is a parasite belonging to the subclass Digenea. Additionally, the scope of the molecular technique allowed the detection of bacterial and fungi clades in the assignment analysis. This is the first evidence of a digenean infection in the muscle of this valuable Caribbean resource.

4.
Acta Trop ; 178: 327-332, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29154947

RESUMO

Chagas disease affects more than 6 million people in Latin America, it is a parasitic disease caused by the protozoan Trypanosoma cruzi, which is transmitted mainly by bloodsucking insects of the Triatominae subfamily. Studies on microbial communities that inhabit the insect gut are important to understanding their role in the parasite transmission and development. The present work aims to evaluate the gut bacterial composition of natural populations of triatomine species from Vichada and Magdalena, administrative states called departments in Colombia, using high-throughput sequencing technologies. The insects were collected from housing peridomestic area and Attalea butyracea palms; they were identified by conventional taxonomy as Triatoma maculata and Rhodnius pallescens, and their guts were dissected under aseptic conditions in order to obtain total DNA. After DNA quality confirmation, the sequencing of the V4 region of 16S rRNA gene was carried out using the Illumina platform MiSeq. The results showed that 13 predominant bacterial genera were present in both species, being Burkholderia, Gordonia, and Ralstonia, the most prevailing bacterial genera. Furthermore, representative genera of each species were found. Williamsia and Kocuria were the most common in R. pallescens; and Dietzia, Aeromonas, and Pelomonas were only observed in T. maculata samples. This is the first study of microbiota associated with these triatomine species using massive sequencing methods The approach allowed inferring the presence of a dominant population of bacteria according to the triatomine species in Colombia, which may suggest a strong association between microbiota and their host.


Assuntos
Actinobacteria/genética , Doença de Chagas/transmissão , RNA Ribossômico 16S/genética , Rhodnius/microbiologia , Triatoma/microbiologia , Actinobacteria/isolamento & purificação , Animais , Doença de Chagas/epidemiologia , Colômbia/epidemiologia , Humanos , Insetos Vetores/parasitologia , Microbiota , RNA Bacteriano/genética , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA