Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Commun ; 14(1): 5106, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607954

RESUMO

Plakophilin-2 (PKP2) is a key component of desmosomes, which, when defective, is known to promote the fibro-fatty infiltration of heart muscle. Less attention has been given to its role in adipose tissue. We report here that levels of PKP2 steadily increase during fat cell differentiation, and are compromised if adipocytes are exposed to a pro-inflammatory milieu. Accordingly, expression of PKP2 in subcutaneous adipose tissue diminishes in patients with obesity, and normalizes upon mild-to-intense weight loss. We further show defective PKP2 in adipocytes to break cell cycle dynamics and yield premature senescence, a key rheostat for stress-induced adipose tissue dysfunction. Conversely, restoring PKP2 in inflamed adipocytes rewires E2F signaling towards the re-activation of cell cycle and decreased senescence. Our findings connect the expression of PKP2 in fat cells to the physiopathology of obesity, as well as uncover a previously unknown defect in cell cycle and adipocyte senescence due to impaired PKP2.


Assuntos
Adipócitos , Placofilinas , Humanos , Moléculas de Adesão Celular , Ciclo Celular/genética , Divisão Celular , Obesidade/genética , Placofilinas/genética
2.
JCI Insight ; 7(14)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35737463

RESUMO

The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, decreased mTORC1 signaling in fat (but increased in the liver) segregated with defective epithelial-mesenchymal transition and the impaired expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.


Assuntos
Fígado Gorduroso , Serina-Treonina Quinases TOR , Animais , Dieta , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
Adv Sci (Weinh) ; 9(4): e2104759, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34898027

RESUMO

The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , gama-Sinucleína/metabolismo , Adipogenia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , gama-Sinucleína/genética
4.
Eur J Clin Invest ; 52(2): e13685, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34582564

RESUMO

BACKGROUND: Obesity was consistently associated with a poor prognosis in patients with COVID-19. Epigenetic mechanisms were proposed as the link between obesity and comorbidities risk. AIM: To evaluate the methylation levels of angiotensin-converting enzyme 2 (ACE2) gene, the main entry receptor of SARS-CoV-2, in different depots of adipose tissue (AT) and leukocytes (PBMCs) in obesity and after weight loss therapy based on a very-low-calorie ketogenic diet (VLCKD), a balanced hypocaloric diet (HCD) or bariatric surgery (BS). MATERIALS AND METHODS: DNA methylation levels of ACE2 were extracted from our data sets generated by the hybridization of subcutaneous (SAT) (n = 32) or visceral (VAT; n = 32) adipose tissue, and PBMCs (n = 34) samples in Infinium HumanMethylation450 BeadChips. Data were compared based on the degree of obesity and after 4-6 months of weight loss either by following a nutritional or surgical treatment and correlated with ACE2 transcript levels. RESULTS: As compared with normal weight, VAT from patients with obesity showed higher ACE2 methylation levels. These differences were mirrored in PBMCs but not in SAT. The observed obesity-associated methylation of ACE2 was reversed after VLCKD and HCD but not after BS. Among the studied CpG sites, cg16734967 and cg21598868, located at the promoter, were the most affected and correlated with BMI. The observed DNA methylation pattern was inversely correlated with ACE2 expression. CONCLUSION: Obesity-related VAT shows hypermethylation and downregulation of the ACE2 gene that is mirrored in PBMCs and is restored after nutritional weight reduction therapy. The results warrant the necessity to further evaluate its implication for COVID-19 pathogenesis.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Gordura Intra-Abdominal/metabolismo , Leucócitos Mononucleares/metabolismo , Obesidade/genética , Receptores de Coronavírus/genética , Gordura Subcutânea/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Cirurgia Bariátrica , COVID-19 , Metilação de DNA , Dieta Cetogênica , Dieta Redutora , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/terapia , Obesidade Mórbida/genética , Obesidade Mórbida/metabolismo , Obesidade Mórbida/terapia , Receptores de Coronavírus/metabolismo , SARS-CoV-2 , Redução de Peso
5.
EBioMedicine ; 53: 102697, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32143184

RESUMO

BACKGROUND: While the impact of metformin in hepatocytes leads to fatty acid (FA) oxidation and decreased lipogenesis, hepatic microRNAs (miRNAs) have been associated with fat overload and impaired metabolism, contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). METHODS: We investigated the expression of hundreds of miRNAs in primary hepatocytes challenged by compounds modulating steatosis, palmitic acid and compound C (as inducers), and metformin (as an inhibitor). Then, additional hepatocyte and rodent models were evaluated, together with transient mimic miRNAs transfection, lipid droplet staining, thin-layer chromatography, quantitative lipidomes, and mitochondrial activity, while human samples outlined the translational significance of this work. FINDINGS: Our results show that treatments triggering fat accumulation and AMPK disruption may compromise the biosynthesis of hepatic miRNAs, while the knockdown of the miRNA-processing enzyme DICER in human hepatocytes exhibited increased lipid deposition. In this context, the ectopic recovery of miR-30b and miR-30c led to significant changes in genes related to FA metabolism, consistent reduction of ceramides, higher mitochondrial activity, and enabled ß-oxidation, redirecting FA metabolism from energy storage to expenditure. INTERPRETATION: Current findings unravel the biosynthesis of hepatic miR-30b and miR-30c in tackling inadequate FA accumulation, offering a potential avenue for the treatment of NAFLD. FUNDING: Instituto de Salud Carlos III (ISCIII), Govern de la Generalitat (PERIS2016), Associació Catalana de Diabetis (ACD), Sociedad Española de Diabetes (SED), Fondo Europeo de Desarrollo Regional (FEDER), Xunta de Galicia, Ministerio de Economía y Competitividad (MINECO), "La Caixa" Foundation, and CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN).


Assuntos
Hepatócitos/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Células Cultivadas , Ceramidas/metabolismo , RNA Helicases DEAD-box/metabolismo , Metabolismo Energético , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Gotículas Lipídicas/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ácido Palmítico/farmacologia , Ribonuclease III/metabolismo
6.
Clin Nutr ; 39(4): 1067-1076, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31036413

RESUMO

BACKGROUND: Membrane-derived extracellular vesicles (EVs) are released to the circulation by cells found in adipose tissue, transferring microRNAs (miRNAs) that may mediate the adaptive response of recipient cells. This study investigated plasma EVs from obese vs. nonobese women and their functional impact in adipocytes. METHODS: Plasma EVs were isolated by differential centrifugation. Concentration and size were examined by nanoparticle tracking analysis (NanoSight). RNA was purified from plasma and plasma EVs of 45 women (47 ± 12 years, 58% of obesity) and profiles of mature miRNAs were assessed. Functional analyses were performed in human adipocytes. FINDINGS: Smaller plasma EVs were found in obese when compared to nonobese women. Positive associations were identified between circulating EVs numbers and parameters of impaired glucose tolerance. Almost 40% of plasma cell-free miRNAs were also found in isolated plasma EVs, defined as Ct values < 37 in ≥75% of samples. BMI together with parameters of insulin resistance were major contributors to EVs-contained miRNA patterns. Treatments of cultured human adipocytes with EVs from obese women led to a significant reduction of genes involved in lipid biosynthesis, while increasing the expression of IRS1 (12.3%, p = 0.002). INTERPRETATION: Size, concentration and the miRNA cargo of plasma EVs are associated with obesity and parameters of insulin resistance. Plasma EVs may mediate intercellular communication relevant to metabolism in adipocytes.


Assuntos
Adipócitos/metabolismo , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Células Cultivadas , Feminino , Humanos , MicroRNAs/sangue , Pessoa de Meia-Idade
7.
FASEB J ; 33(8): 9656-9671, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145872

RESUMO

During adipogenesis, preadipocytes' cytoskeleton reorganizes in parallel with lipid accumulation. Failure to do so may impact the ability of adipose tissue (AT) to shift between lipid storage and mobilization. Here, we identify cytoskeletal transgelin 2 (TAGLN2) as a protein expressed in AT and associated with obesity and inflammation, being normalized upon weight loss. TAGLN2 was primarily found in the adipose stromovascular cell fraction, but inflammation, TGF-ß, and estradiol also prompted increased expression in human adipocytes. Tagln2 knockdown revealed a key functional role, being required for proliferation and differentiation of fat cells, whereas transgenic mice overexpressing Tagln2 using the adipocyte protein 2 promoter disclosed remarkable sex-dependent variations, in which females displayed "healthy" obesity and hypertrophied adipocytes but preserved insulin sensitivity, and males exhibited physiologic changes suggestive of defective AT expandability, including increased number of small adipocytes, activation of immune cells, mitochondrial dysfunction, and impaired metabolism together with decreased insulin sensitivity. The metabolic relevance and sexual dimorphism of TAGLN2 was also outlined by genetic variants that may modulate its expression and are associated with obesity and the risk of ischemic heart disease in men. Collectively, current findings highlight the contribution of cytoskeletal TAGLN2 to the obese phenotype in a gender-dependent manner.-Ortega, F. J., Moreno-Navarrete, J. M., Mercader, J. M., Gómez-Serrano, M., García-Santos, E., Latorre, J., Lluch, A., Sabater, M., Caballano-Infantes, E., Guzmán, R., Macías-González, M., Buxo, M., Gironés, J., Vilallonga, R., Naon, D., Botas, P., Delgado, E., Corella, D., Burcelin, R., Frühbeck, G., Ricart, W., Simó, R., Castrillon-Rodríguez, I., Tinahones, F. J., Bosch, F., Vidal-Puig, A., Malagón, M. M., Peral, B., Zorzano, A., Fernández-Real, J. M. Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Animais , Western Blotting , Citoesqueleto/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Obesidade/etiologia , Fatores Sexuais , Células THP-1
8.
Cell Physiol Biochem ; 51(3): 1051-1068, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30476912

RESUMO

BACKGROUND/AIMS: Obesity is characterized by the immune activation that eventually dampens insulin sensitivity and changes metabolism. This study explores the impact of different inflammatory/ anti-inflammatory paradigms on the expression of toll-like receptors (TLR) found in adipocyte cultures, adipose tissue, and blood. METHODS: We evaluated by real time PCR the impact of acute surgery stress in vivo (adipose tissue) and macrophages (MCM) in vitro (adipocytes). Weight loss was chosen as an anti-inflammatory model, so TLR were analyzed in fat samples collected before and after bariatric surgery-induced weight loss. Associations with inflammatory and metabolic parameters were analyzed in non-obese and obese subjects, in parallel with gene expression measures taken in blood and isolated adipocytes/ stromal-vascular cells (SVC). Treatments with an agonist of TLR3 were conducted in human adipocyte cultures under normal conditions and upon conditions that simulated the chronic low-grade inflammatory state of obesity. RESULTS: Surgery stress raised TLR1 and TLR8 in subcutaneous (SAT), and TLR2 in SAT and visceral (VAT) adipose tissue, while decreasing VAT TLR3 and TLR4. MCM led to increased TLR2 and diminished TLR3, TLR4, and TLR5 expressions in human adipocytes. The anti-inflammatory impact of weight loss was concomitant with decreased TLR1, TLR3, and TLR8 in SAT. Cross-sectional associations confirmed increased V/ SAT TLR1 and TLR8, and decreased TLR3 in obese patients, as compared with non-obese subjects. As expected, TLR were predominant in SVC and adipocyte precursor cells, even though expression of all of them but TLR8 (very low levels) was also found in ex vivo isolated and in vitro differentiated adipocytes. Among SVC, CD14+ macrophages showed increased TLR1, TLR2, and TLR7, but decreased TLR3 mRNA. The opposite patterns shown for TLR2 and TLR3 in V/ SAT, SVC, and inflamed adipocytes were observed in blood as well, being TLR3 more likely linked to lymphocyte instead of neutrophil counts. On the other hand, decreased TLR3 in adipocytes challenged with MCM dampened lipogenesis and the inflammatory response to Poly(I:C). CONCLUSION: Functional variations in the expression of TLR found in blood and hypertrophied fat depots, namely decreased TLR3 in lymphocytes and inflamed adipocytes, are linked to metabolic inflammation.


Assuntos
Adipócitos/patologia , Tecido Adiposo/patologia , Inflamação/genética , Obesidade/genética , Receptor 3 Toll-Like/análise , Receptor 3 Toll-Like/genética , Transcriptoma , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Cirurgia Bariátrica , Estudos Transversais , Feminino , Humanos , Inflamação/sangue , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/patologia , Obesidade/cirurgia , Receptor 3 Toll-Like/sangue
9.
Mol Nutr Food Res ; 62(14): e1700933, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29688621

RESUMO

SCOPE: The enzyme nicotinamide N-methyltransferase (NNMT) is a major methyltransferase in adipose tissue. We hypothesized an epigenetic signature in association with NNMT gene expression in adipose tissue. METHODS AND RESULTS: The global human methylome was analyzed in visceral adipose tissue (VAT) from morbidly obese patients using the Infinium Human Methylation 450 BeadChip array (discovery cohort: n = 11). The findings were confirmed in two additional independent cohorts (cohort 1: n = 60; BMI 20-60 kg m-2 and cohort 2: n = 40; BMI > 40 kg m-2 ) and validated after weight loss (using microarray data). Among the genes associated with the largest methylation fold change were genes related to metabolic processes, proliferation, inflammation, and extracellular matrix remodeling, such as COL23A1, PLEC1, FBXO21, STEAP3, RGS12, IGDCC3, FOXK2, and ORAI2. In fact, the results showed 577 differentially methylated CpG sites (DMCpGs) associated with the NNMT expression levels, with low methylation levels paralleling high NNMT expression. The expression of FBXO21 and FOXK2 was specifically modified after weight loss concomitantly with a decrease in NNMT expression and inflammation-related genes. Interestingly, the adipose tissue NNMT gene expression correlated with markers of adipose tissue inflammation. CONCLUSIONS: The expression of NNMT in VAT is associated with a specific methylome signature involving genes linked to adipose tissue metabolic pathophysiology.

10.
J Endocrinol ; 232(2): 351-362, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27913573

RESUMO

The canonical view about the effect of thyroid hormones (THs) on thermogenesis assumes that the hypothalamus acts merely as a modulator of the sympathetic outflow on brown adipose tissue (BAT). Recent data have challenged that vision by demonstrating that THs act on the ventromedial nucleus of the hypothalamus (VMH) to inhibit AMP-activated protein kinase (AMPK), which regulates the thermogenic program in BAT, leading to increased thermogenesis and weight loss. Current data have shown that in addition to activation of brown fat, the browning of white adipose tissue (WAT) might also be an important thermogenic mechanism. However, the possible central effects of THs on the browning of white fat remain unclear. Here, we show that 3,3',5,5' tetraiodothyroxyne (T4)-induced hyperthyroidism promotes a marked browning of WAT. Of note, central or VMH-specific administration of 3,3',5-triiodothyronine (T3) recapitulates that effect. The specific genetic activation of hypothalamic AMPK in the VMH reversed the central effect of T3 on browning. Finally, we also showed that the expression of browning genes in human WAT correlates with serum T4 Overall, these data indicate that THs induce browning of WAT and that this mechanism is mediated via the central effects of THs on energy balance.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Hipertireoidismo/metabolismo , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Termogênese/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/metabolismo
11.
Diabetologia ; 59(10): 2208-18, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27344313

RESUMO

AIMS/HYPOTHESIS: Adipocyte lipopolysaccharide-binding protein (LBP) biosynthesis is associated with obesity-induced adipose tissue dysfunction. Our purpose was to study the role of LBP in regulating the browning of adipose tissue. METHODS: Adult mice were maintained at 4°C for 3 weeks or treated with the ß3-adrenergic agonist, CL316,243, for 1 week to induce the browning of white fat. Precursor cells from brown and white adipose tissues were cultured under differentiation-inducing conditions to yield brown and beige/brite adipocytes, respectively. In vitro, Lbp was knocked down in 3T3-L1 adipocytes, and cells were treated with recombinant LBP or co-cultured in transwells with control 3T3-L1 adipocytes. Wild-type and Lbp-null mice, fed a standard or high fat diet (HFD) for 15 weeks, were also used in investigations. In humans, subcutaneous and visceral adipose tissue samples were obtained from a cohort of morbidly obese participants. RESULTS: The induction of white fat browning by exposure of mice to cold or CL316,243 treatment was strongly associated with decreased Lbp mRNA expression in white adipose tissue. The acquisition of the beige/brite phenotype in cultured cells was associated with downregulation of Lbp. Moreover, silencing of Lbp induced the expression of brown fat-related genes in adipocytes, whereas LBP treatment reversed this effect. Lbp-null mice exhibited the spontaneous induction of subcutaneous adipose tissue browning, as evidenced by a remarkable increase in Ucp1 and Dio2 gene expression and the appearance of multivacuolar adipocyte clusters. The amount of brown adipose tissue, and brown adipose tissue activity were also increased in Lbp-null mice. These changes were associated with decreased weight gain in Lbp-null mice and protection against HFD-induced inflammatory responses, as shown by reduced IL-6 levels. However, rather than improving glucose homeostasis, these effects led to glucose intolerance and insulin resistance. CONCLUSIONS/INTERPRETATION: LBP is identified as a negative regulator of the browning process, which is likely to contribute to the obesity-promoting action of LBP. The deleterious metabolic effects of LBP deletion are compatible with the concept that the appropriate regulation of inflammatory pathways is necessary for a healthy systemic metabolic profile, regardless of body weight regulation.


Assuntos
Proteínas de Fase Aguda/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidade Mórbida/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda/genética , Animais , Western Blotting , Proteínas de Transporte/genética , Células Cultivadas , Técnicas de Cocultura , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade Mórbida/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sirtuína 3/genética , Sirtuína 3/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Iodotironina Desiodinase Tipo II
12.
Mol Nutr Food Res ; 60(7): 1673-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059147

RESUMO

SCOPE: Changes in genetic variations affecting the taste receptor, type 2, member 38 (TAS2R38) may identify the interacting mechanism leading to obesity and potential associations with proteins partaking in innate immunity, such as surfactant protein D (SPD) and mannan-binding lectin (MBL). METHODS AND RESULTS: We evaluated haplotypes of the bitter-taste receptor TAS2R38 in an identification sample of 210 women in different weight conditions, including anorexia nervosa and obesity. The association with SPD and MBL was tested in an independent sample picturing general population (n = 534). The relationship with obesity was validated in an extended final sample of 1319 participants. In the sample comprised of women in extreme weight conditions, increased obesity was identified in AVI/AVI subjects (OR = 2.5 [1.06-6.11], p = 0.035). In the sample picturing general population, increased SPD and MBL concentrations were found in nonsmoking AVI carriers. In this cohort, smoking and obesity blunted associations between TAS2R38 haplotypes and SPD and MBL. In the extended sample, the association of AVI/AVI haplotypes with increased obesity was also identified (OR = 1.4 [0.99/1.85], p = 0.049), being more robust in subjects aged <40 years (OR = 1.9 [1.06/3.42], p = 0.031). CONCLUSION: Current data reinforce the impact of TAS2R38 gene on phenotypic and clinical outputs affecting obesity, showing significant associations with extreme weight conditions (i.e., obesity and anorexia nervosa), and changes in both olfactory capacity and immune traits.


Assuntos
Imunidade Inata/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Peso Corporal , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Haplótipos , Humanos , Masculino , Lectina de Ligação a Manose/genética , Pessoa de Meia-Idade , Proteína D Associada a Surfactante Pulmonar/genética , Fumar , Paladar , Adulto Jovem
13.
J Clin Endocrinol Metab ; 100(11): E1467-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26252355

RESUMO

CONTEXT: Molecular mechanisms associated with physiological variations in adipose tissue (AT) are not fully recognized. The most recent reports highlight the critical relevance of microRNAs (miRNAs) found in AT. OBJECTIVE: To identify changes in messenger RNA (mRNA) and miRNA expressions and their interaction in human AT before and after surgery-induced weight loss. Research Design and Setting: Genome-wide mRNA and miRNA expressions were assessed by microarrays in abdominal subcutaneous AT of 16 morbidly obese women before and 2 years after laparoscopic Roux-en-Y gastric bypass. The association of changes in miRNAs with their respective mRNA targets was studied. The results were replicated in publicly available microarray datasets. Validation was made by real-time polymerase chain reaction in additional fat samples from 26 age-matched lean women and in isolated human adipocytes. RESULTS: A total of 5018 different mRNA probe sets and 15 miRNAs were differentially expressed after surgery-induced weight loss. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints that elucidate significant changes in cell cycle, development, lipid metabolism, and the inflammatory response. The participation of inflammation was demonstrated by results assessed in isolated adipocytes. Interestingly, when transcriptomes were analyzed taking into account the presence of miRNA target sites, miRNA target mRNAs were upregulated in obese AT (P value = 2 × 10(-181)) and inflamed adipocytes (P value = 4 × 10(-61)), according to the number of target sites harbored by each transcript. CONCLUSIONS: Current findings suggest impaired miRNA target gene expression in obese AT in close association with inflammation, both improving after weight loss.


Assuntos
Regulação para Baixo , Derivação Gástrica , MicroRNAs/metabolismo , Obesidade Mórbida/cirurgia , Gordura Subcutânea Abdominal/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/imunologia , Adipócitos Brancos/metabolismo , Adulto , Índice de Massa Corporal , Linhagem Celular , Células Cultivadas , Estudos de Coortes , Estudos Transversais , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Obesidade Mórbida/genética , Obesidade Mórbida/imunologia , Obesidade Mórbida/metabolismo , RNA Mensageiro/metabolismo , Gordura Subcutânea Abdominal/imunologia , Redução de Peso
14.
Nat Med ; 21(8): 887-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26168293

RESUMO

Nicotinamide N-methyltransferase (Nnmt) methylates nicotinamide, a form of vitamin B3, to produce N(1)-methylnicotinamide (MNAM). Nnmt has emerged as a metabolic regulator in adipocytes, but its role in the liver, the tissue with the strongest Nnmt expression, is not known. In spite of its overall high expression, here we find that hepatic expression of Nnmt is highly variable and correlates with multiple metabolic parameters in mice and humans. Further, we find that suppression of hepatic Nnmt expression in vivo alters glucose and cholesterol metabolism and that the metabolic effects of Nnmt in the liver are mediated by its product MNAM. Supplementation of high-fat diet with MNAM decreases serum and liver cholesterol and liver triglycerides levels in mice. Mechanistically, increasing Nnmt expression or MNAM levels stabilizes sirtuin 1 protein, an effect that is required for their metabolic benefits. In summary, we describe here a novel regulatory pathway for vitamin B3 that could provide a new opportunity for metabolic disease therapy.


Assuntos
Fígado/metabolismo , Nicotinamida N-Metiltransferase/fisiologia , Sirtuína 1/fisiologia , Animais , Colesterol/metabolismo , Dieta Hiperlipídica , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
J Nutr Biochem ; 26(10): 1095-101, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092372

RESUMO

BACKGROUND: Consumption of long-chain polyunsaturated fatty acids (PUFAs), which are abundant in seafood and nuts, ameliorates components of the metabolic syndrome. Circulating microRNAs (miRNAs) have demonstrated to be valuable biomarkers of metabolic diseases. Here, we investigated whether a sustained nuts-enriched diet can lead to changes in circulating miRNAs, in parallel to the dietary modification of fatty acids (FAs). METHODS AND RESULTS: The profile of 192 common miRNAs was assessed (TaqMan low-density arrays) in plasma from 10 healthy women before and after an 8-week trial with a normocaloric diet enriched with PUFAs (30 g/day of almonds and walnuts). The most relevant miRNAs were validated in an extended sample of 30 participants (8 men and 22 women). Adiponectin was measured by immunoassay and FAs by gas liquid chromatography coupled to mass spectrometry. The percentage of both ω-3 (P=.01) and ω-6 (P=.029) PUFAs of dietary origin (as inferred from plasma FA concentrations) increased, whereas saturated FAs decreased (P=.0008). Concomitantly with changes in circulating FAs, several miRNAs were modified by treatment, including decreased miR-328, miR-330-3p, miR-221 and miR-125a-5p, and increased miR-192, miR-486-5p, miR-19b, miR-106a, miR-769-5p, miR-130b and miR-18a. Interestingly, miR-106a variations in plasma correlated with changes in PUFAs, while miR-130b (r=0.58, P=.003) and miR-221 (r=0.46, P=.03) reflected changes in C-reactive protein. The dietary modulation of miR-125a-5p mirrored changes in fasting triglycerides (r=-0.44, P=.019) and increased adiponectin (r=0.43, P=.026). CONCLUSION: Dietary FAs (as inferred from plasma FA concentration) are linked to changes in circulating miRNAs, which may be modified by a PUFAs-enriched diet.


Assuntos
Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , MicroRNAs/sangue , Adiponectina/sangue , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Dieta , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , Nozes/química , Comportamento Sedentário , Triglicerídeos/sangue
16.
FASEB J ; 28(8): 3769-79, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24812087

RESUMO

Impaired adipogenesis renders an adipose tissue unable to expand, leading to lipotoxicity and conditions such as diabetes and cardiovascular disease. While factors important for adipogenesis have been studied extensively, those that set the limits of adipose tissue expansion remain undetermined. Feeding a Western-type diet to apolipoprotein E2 knock-in mice, a model of metabolic syndrome, produced 3 groups of equally obese mice: mice with normal glucose tolerance, hyperinsulinemic yet glucose-tolerant mice, and prediabetic mice with impaired glucose tolerance and reduced circulating insulin. Using proteomics, we compared subcutaneous adipose tissues from mice in these groups and found that the expression of PTRF (polymerase I and transcript release factor) associated selectively with their glucose tolerance status. Lentiviral and pharmacologically overexpressed PTRF, whose function is critical for caveola formation, compromised adipocyte differentiation of cultured 3T3-L1cells. In human adipose tissue, PTRF mRNA levels positively correlated with markers of lipolysis and cellular senescence. Furthermore, a negative relationship between telomere length and PTRF mRNA levels was observed in human subcutaneous fat. PTRF is associated with limited adipose tissue expansion underpinning the key role of caveolae in adipocyte regulation. Furthermore, PTRF may be a suitable adipocyte marker for predicting pathological obesity and inform clinical management.


Assuntos
Adipócitos/patologia , Adipogenia/fisiologia , Cavéolas/fisiologia , Dieta/efeitos adversos , Intolerância à Glucose/etiologia , Hiperinsulinismo/etiologia , Obesidade/etiologia , Estado Pré-Diabético/etiologia , Proteínas de Ligação a RNA/fisiologia , Gordura Subcutânea/metabolismo , Células 3T3-L1 , Adiponectina/sangue , Animais , Aorta/patologia , Apolipoproteína E2/genética , Senescência Celular , Feminino , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Intolerância à Glucose/sangue , Intolerância à Glucose/patologia , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/patologia , Resistência à Insulina , Lipólise , Fígado/química , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/classificação , Obesidade/patologia , Estado Pré-Diabético/sangue , Estado Pré-Diabético/patologia , Gravidez , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Gordura Subcutânea/patologia , Encurtamento do Telômero , Triglicerídeos/metabolismo
17.
Diabetes ; 63(2): 550-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170694

RESUMO

Classically activated macrophages (M1) secrete proinflammatory cytokine and are predominant in obese adipose tissue. M2 macrophages, prevalent in lean adipose tissue, are induced by IL-13 and IL-4, mainly secreted by Th2 lymphocytes, and produce the anti-inflammatory cytokine IL-10. ITCH is a ubiquitously expressed E3 ubiquitin ligase involved in T-cell differentiation and in a wide range of inflammatory pathways. ITCH downregulation in lymphocytes causes aberrant Th2 differentiation. To investigate the role of Th2/M2 polarization in obesity-related inflammation and insulin resistance, we compared wild-type and Itch(-/-) mice in a context of diet-induced obesity (high-fat diet [HFD]). When subjected to HFD, Itch(-/-) mice did not show an increase in body weight or insulin resistance; calorimetric analysis suggested an accelerated metabolism. The molecular analysis of metabolically active tissue revealed increased levels of M2 markers and genes involved in fatty acid oxidation. Histological examination of livers from Itch(-/-) mice suggested that ITCH deficiency protects mice from obesity-related nonalcoholic fatty liver disease. We also found a negative correlation between ITCH and M2 marker expression in human adipose tissues. Taken together, our data indicate that ITCH E3 ubiquitin ligase deficiency protects from the metabolic disorder caused by obesity.


Assuntos
Gorduras na Dieta/efeitos adversos , Obesidade/etiologia , Ubiquitina-Proteína Ligases/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/fisiologia , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Macrófagos Peritoneais/fisiologia , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/genética
18.
J Clin Endocrinol Metab ; 98(10): E1655-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23928666

RESUMO

CONTEXT: Circulating microRNAs (miRNAs) are valuable biomarkers of metabolic diseases and potential therapeutic targets in this field. OBJECTIVE: Our objective was to define the circulating pattern of miRNAs in childhood obesity. DESIGN, SETTINGS, AND MAIN OUTCOME MEASURE: The genome-wide circulating miRNA profile was assessed by RT-PCR in 10 boys (5 lean and 5 obese children). The most relevant miRNAs were cross-sectionally validated in 85 lean versus 40 obese children (63 boys and 62 girls) and longitudinally evaluated in samples from the same children when they were ≈ 7 and ≈ 10 years old (23 boys and 22 girls). RESULTS: The cross-sectional validation study disclosed that 15 specific circulating miRNAs were significantly deregulated in prepubertal obesity, including the decreased miR-221 and miR-28-3p and increased concentrations in plasma of miR-486-5p, miR-486-3p, miR-142-3p, miR-130b, and miR-423-5p (all P < .0001). The circulating concentration of these miRNAs was significantly associated with body mass index and other measures of obesity such as percent fat mass, waist, regional fat distribution and with laboratory parameters such as homeostasis model assessment of insulin resistance, high-molecular-weight adiponectin, C-reactive protein, and circulating lipids in concordance with anthropometric associations. Plasma concentrations of 10 of these circulating miRNAs changed significantly and differently during the 3-year follow-up in children who increased or decreased their normalized weight. CONCLUSION: This study provides the first evidence that circulating miRNAs are deregulated in prepubertal obese children. Thus, the very early detection of an abnormal circulating miRNA profile may be a promising strategy to identify obese children who may suffer from metabolic abnormalities.


Assuntos
Resistência à Insulina/fisiologia , MicroRNAs/sangue , Obesidade Infantil/sangue , Biomarcadores/sangue , Composição Corporal , Índice de Massa Corporal , Peso Corporal , Criança , Estudos Transversais , Feminino , Perfilação da Expressão Gênica , Humanos , Estudos Longitudinais , Masculino , MicroRNAs/genética , Obesidade Infantil/genética
19.
PLoS One ; 8(4): e60468, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577114

RESUMO

CONTEXT: Surfactant protein-D (SP-D) is a primordial component of the innate immune system intrinsically linked to metabolic pathways. We aimed to study the association of single nucleotide polymorphisms (SNPs) affecting SP-D with insulin resistance and type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We evaluated a common genetic variant located in the SP-D coding region (rs721917, Met(31)Thr) in a sample of T2D patients and non-diabetic controls (n = 2,711). In a subset of subjects (n = 1,062), this SNP was analyzed in association with circulating SP-D concentrations, insulin resistance, and T2D. This SNP and others were also screened in the publicly available Genome Wide Association (GWA) database of the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). RESULTS: We found the significant association of rs721917 with circulating SP-D, parameters of insulin resistance and T2D. Indeed, G carriers showed decreased circulating SP-D (p = 0.004), decreased fasting glucose (p = 0.0002), glycated hemoglobin (p = 0.0005), and 33% (p = 0.002) lower prevalence of T2D, estimated under a dominant model, especially among women. Interestingly, these differences remained significant after controlling for origin, age, gender, and circulating SP-D. Moreover, this SNP and others within the SP-D genomic region (i.e. rs10887344) were significantly associated with quantitative measures of glucose homeostasis, insulin sensitivity, and T2D, according to GWAS datasets from MAGIC. CONCLUSIONS: SP-D gene polymorphisms are associated with insulin resistance and T2D. These associations are independent of circulating SP-D concentrations.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Proteína D Associada a Surfactante Pulmonar/genética , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina/genética , Masculino , Pessoa de Meia-Idade , Proteína D Associada a Surfactante Pulmonar/sangue
20.
J Mol Med (Berl) ; 91(4): 523-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23207880

RESUMO

Calgranulin B (S100A9) was recognized as a candidate type 2 diabetes (T2D) gene in the genomic profiling of muscle from a rodent model of T2D and identifying the human orthologs of genes localized in T2D susceptibility regions. Circulating and S100A9 expressions in muscle and adipose tissue, isolated fat cells, and mouse models were evaluated. A common 5'-upstream single-nucleotide polymorphism (SNP; rs3014866) for S100A9 was analyzed, as well as the effects of weight loss and treatments in vitro with recombinant S100A9. S100a9 expression was increased in muscle of diabetic mice (1.6-fold, p = 0.002), and in muscle from subjects with impaired glucose tolerance (∼4-fold, p = 0.028; n = 34). The rs3014866 SNP was associated with circulating S100A9 and the risk of T2D, having TT carriers at 28 % (p = 0.03) lower risk (n = 1,450). Indeed, increased circulating S100A9 (∼4-fold, p = 0.03; n = 206) and subcutaneous (2-fold, p = 0.01) and omental (1.4-fold, p = 0.04) S100A9 gene expressions (n = 83) in TT carriers run in parallel to decreased fasting glucose and glycated hemoglobin. Accordingly, metformin led to increased S100A9 mRNA in ex vivo-treated adipose tissue explants (n = 5/treatment). Otherwise, obese subjects showed a compensatory increase in circulating and S100A9 expressions in adipose (n = 126), as further demonstrated by decreased levels after diet- (-34 %, p = 0.002; n = 20) and surgery-induced (-58 %, p = 0.02; n = 8) weight loss. Lipopolysaccharide led to increased S100A9 in adipose from mice (n = 5/treatment) while recombinant S100A9 downregulated inflammation in adipocytes (n = 3/treatment). Current findings support the strategy of testing differentially expressed genes in mice and human orthologs associated with T2D. The increased S100A9 reported for obesity and insulin resistance may be envisioned as a compensatory mechanism for inflammation.


Assuntos
Calgranulina B/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adulto , Idoso , Alelos , Animais , Calgranulina B/sangue , Calgranulina B/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Metformina/farmacologia , Camundongos , Pessoa de Meia-Idade , Músculos/efeitos dos fármacos , Músculos/metabolismo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...