Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773540

RESUMO

In 2020, a new genotype of swine H1N2 influenza virus (H1avN2-HA 1C.2.4) was identified in France. It rapidly spread within the pig population and supplanted the previously predominant H1avN1-HA 1C.2.1 virus. To characterize this new genotype which is genetically and antigenically distant from the other H1avNx viruses detected in France, an experimental study was conducted to compare the outcomes of H1avN2 and H1avN1 infections in pigs and evaluate the protection conferred by the only inactivated vaccine currently licensed in Europe containing an HA 1C (clade 1C.2.2) antigen. Infection with H1avN2 induced stronger clinical signs and earlier shedding than H1avN1. The neutralizing antibodies produced following H1avN2 infection were unable to neutralize H1avN1, and vice versa, whereas the cellular-mediated immunity cross-reacted. Vaccination slightly altered the impact of H1avN2 infection at the clinical level, but did not prevent shedding of infectious virus particles. It induced a cellular-mediated immune response towards H1avN2, but did not produce neutralizing antibodies against this virus. As in vaccinated animals, animals previously infected by H1avN1 developed a cross-reacting cellular immune response but no neutralizing antibodies against H1avN2. However, H1avN1 pre-infection induced a better protection against the H1avN2 infection than vaccination, probably due to higher levels of non-neutralizing antibodies and a mucosal immunity. Altogether, these results showed that the new H1avN2 genotype induced a severe respiratory infection and that the actual vaccine was less effective against this H1avN2-HA 1C.2.4 than against H1avN1-HA 1C.2.1, which may have contributed to the H1avN2 epizootic and dissemination in pig farms in France.


Assuntos
Genótipo , Vírus da Influenza A Subtipo H1N2 , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , França/epidemiologia , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/imunologia , Virulência , Anticorpos Neutralizantes/sangue , Imunidade Celular
2.
Vet Microbiol ; 228: 20-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30593368

RESUMO

PEDV is mainly transmitted by the oro-fecal route although PEDV shedding in semen has already been shown for an S-non-InDel PEDV strain infection. The aim of this study was to determine if PEDV can be shed in semen from SPF (specific pathogens free) boars infected by a French S-InDel PEDV strain (PEDV/FR/001/2014) and in case of positive semen to determine the infectivity of that semen. Both infected boars had diarrhea after inoculation and shed virus in feces. PEDV genome was also detected by RT-qPCR in the sperm-rich fraction of semen (6.94 × 103 and 4.73 × 103 genomic copies/mL) from the two boars infected with the S-InDel PEDV strain but only once at 7DPI. In addition, PEDV RNA in Peyer's patches and in mesenteric lymph nodes was also present for the two inoculated boars. The PEDV positive semen (S-non-InDel and S-InDel) sampled during a previous trial and in this boar trial were inoculated to six SPF weaned pigs. The inoculated piglets did not seroconvert and did not shed virus throughout the duration of the study except for one pig at 18 DPI. But, PEDV could be detected in intestinal tissues such as duodenum, jejunum and jejunum Peyer's patches by RT-qPCR except for one pig. Even if PEDV genome has been detected in semen, experimental infection of piglets with positive semen failed to conclude to the infectivity of the detected PEDV.


Assuntos
Infecções por Coronavirus/veterinária , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Doenças dos Suínos/virologia , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Diarreia/epidemiologia , Diarreia/virologia , Modelos Animais de Doenças , Fezes/virologia , Intestinos/virologia , Masculino , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Sêmen/virologia , Organismos Livres de Patógenos Específicos , Suínos , Doenças dos Suínos/epidemiologia , Eliminação de Partículas Virais
3.
Transbound Emerg Dis ; 65(6): 1720-1732, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29968338

RESUMO

From the severe porcine epidemic diarrhoea (PED) epidemics that struck in 2013 in the United States of America and other countries of North and South America, two types of porcine epidemic diarrhoea virus (PEDV) were isolated, namely the InDel and the non-InDel strains. They are differentiated by insertions/deletions in the S1 nucleotide sequence of the S gene, and differences in virulence were observed from the clinical cases. In 2014, a PED outbreak occurred in a pig farm in France, from which an InDel strain was isolated. This study aimed at comparing, under experimental conditions, the pathogenicity and the direct and indirect transmissions between a non-InDel strain isolated from a PED-affected piglet in 2014 in the USA and the French InDel strain. All infected pigs showed clinical signs with the non-InDel strain although only the inoculated and direct contact pigs showed clinical signs in the InDel strain group. Although viral RNA was detected in air samples with both strains, the indirect contact pigs remained free from infection with the InDel strain in contrast to the non-InDel group in which airborne transmission occurred in the indirect contact pigs. All infected pigs shed virus in faeces regardless of PEDV strain with 9 of 30 pigs showing intermittent faecal shedding. The transmission rate by direct contact was found to be 2.17-fold higher than the non-InDel strain compared with the InDel. In conclusion, the InDel strain was less pathogenic than the non-InDel strain in our experimental conditions. The transmission route differed between the two strains. Direct contact was the main transmission route for the InDel strain, although the non-InDel strain was transmitted through direct contact and indirectly through the air.


Assuntos
Infecções por Coronavirus/transmissão , Transmissão de Doença Infecciosa/veterinária , Vírus da Diarreia Epidêmica Suína/patogenicidade , Doenças dos Suínos/transmissão , Animais , Sequência de Bases , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Diarreia/epidemiologia , Surtos de Doenças/veterinária , Fazendas , Fezes/virologia , França , Vírus da Diarreia Epidêmica Suína/genética , RNA Viral/genética , América do Sul , Suínos , Doenças dos Suínos/virologia , Estados Unidos , Virulência
4.
Vet Res ; 49(1): 7, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29368629

RESUMO

In 2013, PED emerged for the first time in the United States (US). The porcine epidemic diarrhea virus (PEDV) spread quickly throughout North America. Infection with PEDV causes watery diarrhea and up to 100% mortality in piglets, particularly for highly pathogenic non-InDel strains circulating in the US. PEDV is mainly transmitted by the fecal-oral route. Transmission via the venereal route has been suspected but not previously investigated. The aim of the study was to determine if PEDV could be detected in semen from infected specific pathogen-free (SPF) boars inoculated with a PEDV US non-InDel strain suggesting venereal transmission may occur. Two boars orally inoculated with PEDV showed clinical signs and virus shedding in feces. Transient presence of the PEDV genome was detected by RT-qPCR in the seminal (5.06 × 102 to 2.44 × 103 genomic copies/mL) and sperm-rich fraction of semen (5.64 × 102 to 3.40 × 104 genomic copies/mL) and a longer duration of viral shedding was observed in the sperm-rich fraction. The evidence of PEDV shedding in semen raises new questions in term of disease spread within the pig population with the use of potentially contaminated semen.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Doenças dos Suínos/virologia , Eliminação de Partículas Virais , Animais , Infecções por Coronavirus/virologia , Masculino , Sêmen , Organismos Livres de Patógenos Específicos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA