Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Biodes Manuf ; 7(3): 277-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818303

RESUMO

Melt extrusion-based additive manufacturing (ME-AM) is a promising technique to fabricate porous scaffolds for tissue engineering applications. However, most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate. Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct; however, there are limited strategies available to control the surface density. Here, we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k (PCL5k) containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios. Stable porous three-dimensional (3D) scaffolds were then fabricated using a high weight percentage (75 wt.%) of the low molecular weight PCL5k. As a proof-of-concept test, we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface, yielding a density of 201-561 pmol/cm2. Subsequently, a bone morphogenetic protein 2 (BMP-2)-derived peptide was grafted onto the films comprising different blend compositions, and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed. After two weeks of culturing in a basic medium, cells expressed higher levels of BMP receptor II (BMPRII) on films with the conjugated peptide. In addition, we found that alkaline phosphatase activity was only significantly enhanced on films containing the highest peptide density (i.e., 561 pmol/cm2), indicating the importance of the surface density. Taken together, these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface. Moreover, we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of (modified) polymers. Furthermore, the use of alkyne-azide "click" chemistry enables spatial control over bioconjugation of many tissue-specific moieties, making this approach a versatile strategy for tissue engineering applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s42242-024-00286-2.

2.
Biomater Adv ; 158: 213760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242056

RESUMO

The utilization of 3D printing technology for the fabrication of graft substitutes in bone repair holds immense promise. However, meeting the requirements for printability, bioactivity, mechanical strength, and biological properties of 3D printed structures concurrently poses a significant challenge. In this study, we introduce a novel approach by incorporating amorphous magnesium phosphate-graphene oxide (AMP-GO) into a thermo-crosslinkable chitosan/ß glycerol phosphate (CS/GP) ink. We fabricated thermo-crosslinkable CS inks containing varying concentrations (10 %, 20 %, or 30 % weight) of AMP-GO. The 3D printed scaffolds incorporating 20 % AMP-GO exhibited significantly improved mechanical properties, with compressive strengths of 4.5 ± 0.06 MPa compared to 0.5 ± 0.03 MPa for CS printed scaffolds. Moreover, the CS/AMP-GO inks demonstrated enhanced antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, attributed to the release of magnesium cations and the performance of GO. Additionally, CS/20AMP-GO ink facilitated increased adhesion, viability, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs), as evidenced by the upregulation of ALP, COL1, and Runx2 expression, which were elevated 9.8, 6.5, and >22 times, respectively, compared to pure CS scaffolds. Considering its exceptional in vivo osteogenic potential, we anticipate that the CS/20AMP-GO ink holds great potential for 3D printing of bone grafts.


Assuntos
Quitosana , Grafite , Compostos de Magnésio , Quitosana/farmacologia , Escherichia coli , Osteogênese , Staphylococcus aureus , Antibacterianos/farmacologia , Fosfatos
4.
Acta Biomater ; 126: 496-510, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727193

RESUMO

3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical analysis showed that limited contamination occurred during sintering. The compressive strength and Young's modulus of the scaffolds exhibited values between those of cancellous and cortical bone. The 3D Ti6Al4V-TCP scaffolds with 10 wt% TCP allowed deposition of a calcium phosphate layer on the surface in a simulated body fluid. Cumulative release of calcium and phosphate ions from the scaffolds was observed in a simulated physiological solution, in contrast to a cell culture medium. A pilot in vivo study, in which the scaffolds were implanted intramuscularly in dogs showed ectopic bone formation in the Ti6Al4V-TCP scaffolds with 10 wt% TCP, showing their osteoinductive potential. The porous 3D Ti6Al4V-TCP scaffolds developed here combine the mechanical properties of the metal with the bioactivity of the ceramic and are therefore likely to yield more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery. STATEMENT OF SIGNIFICANCE: In this work, 3D porous hybrid scaffolds made of a titanium alloy and a beta-tricalcium phosphate ceramic (Ti6Al4V-TCP) were developed using the direct additive manufacturing technique 3D fiber deposition. Upon optimization of the powders and slurry, scaffolds with up to 10 wt.% TCP with good mechanical properties and controllable porous structure at different length scales were successfully manufactured. A preliminary in vivo study in an intramuscular model demonstrated that the addition of TCP to the metal alloy improved its bioactivity. The combination of the two materials and the use of a direct additive manufacturing technique resulted in scaffolds that may lead to more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery.


Assuntos
Substitutos Ósseos , Titânio , Ligas , Animais , Fosfatos de Cálcio , Cães , Porosidade , Alicerces Teciduais
5.
Mater Sci Eng C Mater Biol Appl ; 120: 111750, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545891

RESUMO

Fabrication of simultaneously robust and superabsorbent gelatin-based hydrogels for biomedical applications still remains a challenge due to lack of locally dissipative points in the presence of large water content. Here, we apply a synthesis strategy through which water absorbency and energy dissipative points are separated, and toughening mechanism is active closely at the crack tip. For this, gelatin-based microgels (GeMs) were synthesized in a way that concentrated supramolecular interactions were present to increase the energy necessary to propagate a macroscopic crack. The microgels were interlocked to each other via both temporary hydrophobic associations and permanent covalent crosslinks, in which the sacrificial binds sustained the toughness due to the mobility of the junction zones and particles sliding. However, chemical crosslinking points preserved the integrity and fast recoverability of the hydrogel. Hysteresis increased strongly with increasing supramolecular interactions within the network. The prepared hydrogels showed energy loss and swelling ratio up to 3440 J. m-3 and 830%, respectively, which was not achievable with conventional network fabrication methods. The microgels were also assessed for their in vivo biocompatibility in a rat subcutaneous pocket assay. Results of hematoxylin and eosin (H&E) staining demonstrated regeneration of the tissue around the scaffolds without incorporation of growth factors. Also, vascularization within the scaffolds was observed after 4 weeks implantation. These results indicate that our strategy is a promising method to manipulate those valuable polymers, which lose their toughness and applicability with increasing their water content.


Assuntos
Gelatina , Hidrogéis , Animais , Materiais Biocompatíveis , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Ratos , Engenharia Tecidual , Água
6.
Mater Today Bio ; 6: 100051, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32435758

RESUMO

Articular cartilage was thought to be one of the first tissues to be successfully engineered. Despite the avascular and non-innervated nature of the tissue, the cells within articular cartilage - chondrocytes - account for a complex phenotype that is difficult to be maintained in vitro. The use of bone marrow-derived stromal cells (BMSCs) has emerged as a potential solution to this issue. Differentiation of BMSCs toward stable and non-hypertrophic chondrogenic phenotypes has also proved to be challenging. Moreover, hyaline cartilage presents a set of mechanical properties - relatively high Young's modulus, elasticity, and resilience - that are difficult to reproduce. Here, we report on the use of additive manufactured biodegradable poly(ester)urethane (PEU) scaffolds of two different structures (500 µm pore size and 90° or 60° deposition angle) that can support the loads applied onto the knee while being highly resilient, with a permanent deformation lower than 1% after 10 compression-relaxation cycles. Moreover, these scaffolds appear to promote BMSC differentiation, as shown by the deposition of glycosaminoglycans and collagens (in particular collagen II). At gene level, BMSCs showed an upregulation of chondrogenic markers, such as collagen II and the Sox trio, to higher or similar levels than that of traditional pellet cultures, with a collagen II/collagen I relative expression of 2-3, depending on the structure of the scaffold. Moreover, scaffolds with different pore architectures influenced the differentiation process and the final BMSC phenotype. These data suggest that additive manufactured PEU scaffolds could be good candidates for cartilage tissue regeneration in combination with microfracture interventions.

7.
Biomaterials ; 229: 119577, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704466

RESUMO

The durability of prosthetic arteriovenous (AV) grafts for hemodialysis access is low, predominantly due to stenotic lesions in the venous outflow tract and infectious complications. Tissue engineered blood vessels (TEBVs) might offer a tailor-made autologous alternative for prosthetic grafts. We have designed a method in which TEBVs are grown in vivo, by utilizing the foreign body response to subcutaneously implanted polymeric rods in goats, resulting in the formation of an autologous fibrocellular tissue capsule (TC). One month after implantation, the polymeric rod is extracted, whereupon TCs (length 6 cm, diameter 6.8 mm) were grafted as arteriovenous conduit between the carotid artery and jugular vein of the same goats. At time of grafting, the TCs were shown to have sufficient mechanical strength in terms of bursting pressure (2382 ±â€¯129 mmHg), and suture retention strength (SRS: 1.97 ±â€¯0.49 N). The AV grafts were harvested at 1 or 2 months after grafting. In an ex vivo whole blood perfusion system, the lumen of the vascular grafts was shown to be less thrombogenic compared to the initial TCs and ePTFE grafts. At 8 weeks after grafting, the entire graft was covered with an endothelial layer and abundant elastin expression was present throughout the graft. Patency at 1 and 2 months was comparable with ePTFE AV-grafts. In conclusion, we demonstrate the remodeling capacity of cellularized in vivo engineered TEBVs, and their potential as autologous alternative for prosthetic vascular grafts.


Assuntos
Implante de Prótese Vascular , Prótese Vascular , Artérias Carótidas/cirurgia , Veias Jugulares/cirurgia , Diálise Renal , Engenharia Tecidual , Grau de Desobstrução Vascular
8.
Biofabrication ; 11(2): 021002, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30776782

RESUMO

Lab-On-a-Brane (LOB) represents a class of Lab-On-a-Chip (LOC) integrating flexible, highly gas permeable and biocompatible thin membranes (TMs). Here we demonstrate the potentiality of LOBs as cell biochips promoting 3D cell growth. The human cancer cells MCF-7 were cultured into standard multiwells (MWs) and into polydimethylsiloxane (PDMS) MWs, LOCs, and LOBs of different wettability. Surface treatments based on oxygen plasma and coating deposition have been performed to produce hydrophilic, hydrophobic, and oleophobic chips. By a comparison between all these chips, we observed that 3D cell aggregation is favored in LOBs, independent of substrate wettability. This may be attributed to the TM flexibility and the high oxygen/carbon dioxide permeability. Ultimately, LOBs seem to combine the advantages of LOCs as multi-well microfluidic chips to reduce operation time for cell seeding and medium refresh, with the mechanical/morphological properties of PDMS TMs. This is convenient in the perspective of applying mechanical stimuli and monitoring cell stiffness, or studying the metabolism of molecules permeable to PDMS membrane in response to external stimuli with interesting outcomes in cellular biology.


Assuntos
Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Esferoides Celulares/citologia , Proliferação de Células , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Água/química
9.
Mater Today Bio ; 4: 100025, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32159154

RESUMO

In bottom-up tissue engineering, small modular units of cells and biomaterials are assembled toward â€‹larger and more complex ones. In conjunction with a new implementation of this approach, a novel method to fabricate microscale objects from biopolymers by thermal imprinting on water-soluble sacrificial layers is presented. By this means, geometrically well-defined objects could be obtained without involving toxic agents in the form of photoinitiators. The micro-objects were used as cell-adhesive substrates and cell spacers in engineered tissues created by cell-guided assembly of the objects. Such constructs can be applied both for in vitro studies and clinical treatments. Clinically relevantly sized aggregates comprised of cells and micro-objects retained their viability up to 2 weeks of culture. The aggregation behavior of cells and objects showed to depend on the type and number of cells applied. To demonstrate the micro-objects' potential for engineering vascularized tissues, small aggregates of human bone marrow stromal cells (hMSCs) and micro-objects were coated with a layer of human umbilical vein endothelial cells (HUVECs) and fused into larger tissue constructs, resulting in HUVEC-rich regions at the aggregates' interfaces. This three-dimensional network-type spatial cellular organization could foster the establishment of (premature) vascular structures as a vital prerequisite of, for example, bottom-up-engineered bone-like tissue.

10.
Acta Biomater ; 55: 310-322, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373083

RESUMO

Micro- and nano-topographies of scaffold surfaces play a pivotal role in tissue engineering applications, influencing cell behavior such as adhesion, orientation, alignment, morphology and proliferation. In this study, a novel microfabrication method based on the combination of soft-lithography and electrospinning for the production of micro-patterned electrospun scaffolds was proposed. Subsequently, a 3D screening device for electrospun meshes with different micro-topographies was designed, fabricated and biologically validated. Results indicated that the use of defined patterns could induce specific morphological variations in human mesenchymal stem cell cytoskeletal organization, which could be related to differential activity of signaling pathways. STATEMENT OF SIGNIFICANCE: We introduce a novel and time saving method to fabricate 3D micropatterns with controlled micro-architectures on electrospun meshes using a custom made collector and a PDMS mold with the desired topography. A possible application of this fabrication technique is represented by a 3D screening system for patterned electrospun meshes that allows the screening of different scaffold/electrospun parameters on cell activity. In addition, what we have developed in this study could be modularly applied to existing platforms. Considering the different patterned geometries, the cell morphological data indicated a change in the cytoskeletal organization with a close correspondence to the patterns, as shown by phenoplot and boxplot analysis, and might hint at the differential activity of cell signaling. The 3D screening system proposed in this study could be used to evaluate topographies favoring cell alignment, proliferation and functional performance, and has the potential to be upscaled for high-throughput.


Assuntos
Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais , Alicerces Teciduais/química , Adulto , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade
11.
Biofabrication ; 8(1): 015009, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26824799

RESUMO

A triphasic scaffold (TPS) for the regeneration of the bone-ligament interface was fabricated combining a 3D fiber deposited polycaprolactone structure and a polylactic co-glycolic acid electrospun. The scaffold presented a gradient of physical and mechanical properties which elicited different biological responses from human mesenchymal stem cells. Biological test were performed on the whole TPS and on scaffolds comprised of each single part of the TPS, considered as the controls. The TPS showed an increase of the metabolic activity with culturing time that seemed to be an average of the controls at each time point. The importance of differentiation media for bone and ligament regeneration was further investigated. Metabolic activity analysis on the different areas of the TPS showed a similar trend after 7 days in both differentiation media. Total alkaline phosphatase (ALP) activity analysis showed a statistically higher activity of the TPS in mineralization medium compared to the controls. A different glycosaminoglycans amount between the TPS and its controls was detected, displaying a similar trend with respect to ALP activity. Results clearly indicated that the integration of electrospinning and additive manufacturing represents a promising approach for the fabrication of scaffolds for the regeneration of tissue interfaces, such as the bone-to-ligament one, because it allows mimicking the structural environment combining different biomaterials at different scales.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Regeneração Tecidual Guiada/instrumentação , Ligamentos/fisiologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Osso e Ossos/citologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Ácido Láctico/química , Ligamentos/citologia , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Transição de Fase , Poliésteres , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Impressão Tridimensional , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual/instrumentação , Adulto Jovem
12.
J Tissue Eng Regen Med ; 10(8): 679-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-24668928

RESUMO

In regenerative medicine studies, cell seeding efficiency is not only optimized by changing the chemistry of the biomaterials used as cell culture substrates, but also by altering scaffold geometry, culture and seeding conditions. In this study, the importance of seeding parameters, such as initial cell number, seeding volume, seeding concentration and seeding condition is shown. Human mesenchymal stem cells (hMSCs) were seeded into cylindrically shaped 4 × 3 mm polymeric scaffolds, fabricated by fused deposition modelling. The initial cell number ranged from 5 × 10(4) to 8 × 10(5) cells, in volumes varying from 50 µl to 400 µl. To study the effect of seeding conditions, a dynamic system, by means of an agitation plate, was compared with static culture for both scaffolds placed in a well plate or in a confined agarose moulded well. Cell seeding efficiency decreased when seeded with high initial cell numbers, whereas 2 × 10(5) cells seemed to be an optimal initial cell number in the scaffolds used here. The influence of seeding volume was shown to be dependent on the initial cell number used. By optimizing seeding parameters for each specific culture system, a more efficient use of donor cells can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais/química , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Integr Biol (Camb) ; 7(12): 1574-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566169

RESUMO

Many studies have shown the influence of soluble factors and material properties on the differentiation capacity of mesenchymal stromal cells (MSCs) cultured as monolayers. These types of two-dimensional (2D) studies can be used as simplified models to understand cell processes related to stem cell sensing and mechano-transduction in a three-dimensional (3D) context. For several other mechanisms such as cell-cell signaling, cell proliferation and cell morphology, it is well-known that cells behave differently on a planar surface compared to cells in 3D environments. In classical tissue engineering approaches, a combination of cells, 3D scaffolds and soluble factors are considered as the key ingredients for the generation of mechanically stable 3D tissue constructs. However, when MSCs are used for tissue engineering strategies, little is known about the maintenance of their differentiation potential in 3D scaffolds after the removal of differentiation soluble factors. In this study, the differentiation potential of human MSCs (hMSCs) into the chondrogenic and osteogenic lineages on two distinct 3D scaffolds, additive manufactured electrospun scaffolds, was assessed and compared to conventional 2D culture. Human MSCs cultured in the presence of soluble factors in 3D showed to differentiate to the same extent as hMSCs cultured as 2D monolayers or as scaffold-free pellets, indicating that the two scaffolds do not play a consistent role in the differentiation process. In the case of phenotypic changes, the achieved differentiated phenotype was not maintained after the removal of soluble factors, suggesting that the plasticity of hMSCs is retained in 3D cell culture systems. This finding can have implications for future tissue engineering approaches in which the validation of hMSC differentiation on 3D scaffolds will not be sufficient to ensure the maintenance of the functionality of the cells in the absence of appropriate differentiation signals.


Assuntos
Células-Tronco Mesenquimais/citologia , Fosfatase Alcalina/metabolismo , Técnicas de Cultura de Células , Desdiferenciação Celular , Diferenciação Celular , Condrogênese , Matriz Extracelular/metabolismo , Humanos , Mecanotransdução Celular , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Varredura , Osteogênese , Fenótipo , Polímeros/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
14.
Biofabrication ; 7(2): 025009, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26019140

RESUMO

In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate blood mediated inflammatory response, lack of vascularization, and allo- and autoimmunity. Bioengineered scaffolds can potentially provide an alternative extra-hepatic transplantation site for islets by improving nutrient diffusion and blood supply to the scaffold. This would ultimately result in enhanced islet viability and functionality compared to conventional intra portal transplantation. In this regard, the biomaterial choice, the three-dimensional (3D) shape and scaffold porosity are key parameters for an optimal construct design and, ultimately, transplantation outcome. We used 3D bioplotting for the fabrication of a 3D alginate-based porous scaffold as an extra-hepatic islet delivery system. In 3D-plotted alginate scaffolds the surface to volume ratio, and thus oxygen and nutrient transport, is increased compared to conventional bulk hydrogels. Several alginate mixtures have been tested for INS1E ß-cell viability. Alginate/gelatin mixtures resulted in high plotting performances, and satisfactory handling properties. INS1E ß-cells, human and mouse islets were successfully embedded in 3D-plotted constructs without affecting their morphology and viability, while preventing their aggregation. 3D plotted scaffolds could help in creating an alternative extra-hepatic transplantation site. In contrast to microcapsule embedding, in 3D plotted scaffold islets are confined in one location and blood vessels can grow into the pores of the construct, in closer contact to the embedded tissue. Once revascularization has occurred, the functionality is fully restored upon degradation of the scaffold.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Transplante das Ilhotas Pancreáticas , Alicerces Teciduais , Alginatos/química , Animais , Cápsulas/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Gelatina/química , Glucose/metabolismo , Glucose/farmacologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/toxicidade , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Porosidade , Ratos
15.
Ann Biomed Eng ; 43(9): 2069-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25589372

RESUMO

The main objective of this study was to evaluate the effectiveness of a mesenchymal stem cell (MSC)-seeded polyethylene-oxide-terephthalate/polybutylene-terephthalate (PEOT/PBT) scaffold for cartilage tissue repair in an osteochondral defect using a rabbit model. Material characterisation using scanning electron microscopy indicated that the scaffold had a 3D architecture characteristic of the additive manufacturing fabrication method, with a strut diameter of 296 ± 52 µm and a pore size of 512 ± 22 µm × 476 ± 25 µm × 180 ± 30 µm. In vitro optimisation revealed that the scaffold did not generate an adverse cell response, optimal cell loading conditions were achieved using 50 µg/ml fibronectin and a cell seeding density of 25 × 10(6) cells/ml and glycosaminoglycan (GAG) accumulation after 28 days culture in the presence of TGFß3 indicated positive chondrogenesis. Cell-seeded scaffolds were implanted in osteochondral defects for 12 weeks, with cell-free scaffolds and empty defects employed as controls. On examination of toluidine blue staining for chondrogenesis and GAG accumulation, both the empty defect and the cell-seeded scaffold appeared to promote repair. However, the empty defect and the cell-free scaffold stained positive for collagen type I or fibrocartilage, while the cell-seeded scaffold stained positive for collagen type II indicative of hyaline cartilage and was statistically better than the cell-free scaffold in the blinded histological evaluation. In summary, MSCs in combination with a 3D PEOT/PBT scaffold created a reparative environment for cartilage repair.


Assuntos
Cartilagem/lesões , Cartilagem/metabolismo , Condrogênese , Células-Tronco Mesenquimais/metabolismo , Poliésteres , Polietilenoglicóis , Alicerces Teciduais , Animais , Cartilagem/inervação , Células-Tronco Mesenquimais/patologia , Coelhos
16.
Biotechnol Bioeng ; 111(9): 1864-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24824318

RESUMO

In the field of tissue engineering, mechano-regulation theories have been applied to help predict tissue development in tissue engineering scaffolds in the past. For this, finite element models (FEMs) were used to predict the distribution of strains within a scaffold. However, the strains reported in these studies are volumetric strains of the material or strains developed in the extracellular matrix occupying the pore space. The initial phase of cell attachment and growth on the biomaterial surface has thus far been neglected. In this study, we present a model that determines the magnitude of biomechanical signals on the biomaterial surface, enabling us to predict cell differentiation stimulus values at this initial stage. Results showed that magnitudes of the 2D strain--termed surface strain--were lower when compared to the 3D volumetric strain or the conventional octahedral shear strain as used in current mechano-regulation theories. Results of both µCT and CAD derived FEMs from the same scaffold were compared. Strain and fluid shear stress distributions, and subsequently the cell differentiation stimulus, were highly dependent on the pore shape. CAD models were not able to capture the distributions seen in the µCT FEM. The calculated mechanical stimuli could be combined with current mechanobiological models resulting in a tool to predict cell differentiation in the initial phase of tissue engineering. Although experimental data is still necessary to properly link mechanical signals to cell behavior in this specific setting, this model is an important step towards optimizing scaffold architecture and/or stimulation regimes.


Assuntos
Fenômenos Químicos , Fenômenos Mecânicos , Alicerces Teciduais , Adesão Celular , Diferenciação Celular , Proliferação de Células , Modelos Biológicos , Reologia
17.
Adv Mater ; 26(16): 2592-9, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24395427

RESUMO

A material-based bottom-up approach is proposed towards an assembly of cells and engineered micro-objects at the macroscale. We show how shape, size and wettability of engineered micro-objects play an important role in the behavior of cells on these objects. This approach can, among other applications, be used as a tool to engineer complex 3D tissues of clinically relevant size.


Assuntos
Microtecnologia/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Agregação Celular , Linhagem Celular , Sobrevivência Celular , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos
18.
Biofabrication ; 5(3): 035014, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23945472

RESUMO

An electrospinning technique based on the use of two oppositely charged nozzles was applied to fabricate continuous twisted yarns of poly(L-lactide) (PLLA) nano/micro fibers. In this study, the effect of solvent on the electrospinning of PLLA fibrous yarns was investigated. For this purpose, yarns were electrospun using chloroform, dichloromethane or 2,2,2-trifluoroethanol as solvents at a PLLA concentration of 7 wt%. The analysis of the morphology, diameter, crystallinity and mechanical properties of electrospun yarns revealed that the vapor pressure of the solvent plays an important role. Whereas the fiber diameter decreased, the crystallinity of the fibers increased using a solvent with lower vapor pressure. In addition, mechanical properties (e.g., tensile strength and modulus) revealed that the yarns composed of fibers with smaller diameters showed higher tensile strength and modulus. In summary, fine-tuning solvent properties resulted in a modulation of fiber diameter, crystallinity, and thereby yarn mechanical properties, and are important factors to consider in the fabrication and application of electrospun yarns.


Assuntos
Nanofibras/química , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Eletroquímica/instrumentação , Eletroquímica/métodos , Poliésteres/síntese química , Porosidade , Solventes/química , Resistência à Tração
19.
Biomaterials ; 34(17): 4259-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23489921

RESUMO

An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties, are indeed effective to support tissue regeneration by co-cultured primary and expanded chondrocyte (1:4). Cells were cultured on scaffolds in vitro for 4 weeks. A higher amount of cartilage specific matrix (ECM) was formed on mechanically matching (M) scaffolds after 28 days. A less protein adhesive composition supported chondrocytes rounded morphology, which contributed to cartilaginous differentiation. Interestingly, the dynamic stiffness of matching constructs remained approximately at the same value after culture, suggesting a comparable kinetics of tissue formation and scaffold degradation. Cartilage regeneration in matching scaffolds was confirmed subcutaneously in vivo. These results imply that mechanically matching scaffolds with appropriate physico-chemical properties support chondrocyte differentiation.


Assuntos
Cartilagem/fisiologia , Fenômenos Químicos , Regeneração/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos , DNA/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Teste de Materiais , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Tela Subcutânea/metabolismo
20.
Biofabrication ; 5(1): 015006, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23229020

RESUMO

Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinning to fabricate fibrous three-dimensional scaffolds made of a poly (ethylene oxide terephthalate)/poly (butylene terephthalate) copolymer to mimic the physical microenvironment of extracellular matrix and applied radio-frequency oxygen plasma treatment to create nanoscale roughness. Scanning electron microscopy (SEM) analysis revealed a fibre diameter of 5.49 ± 0.96 µm for as-spun meshes. Atomic force microscopy (AFM) measurements determined an exponential increase of surface roughness with plasma treatment time. An increase in hydrophilicity after plasma treatment was observed, which was associated with higher oxygen content in plasma treated scaffolds compared to untreated ones. A more pronounced adsorption of bovine serum albumin occurred on scaffolds treated with plasma for 15 and 30 min compared to untreated fibres. Clinically relevant human mesenchymal stromal cells (hMSCs) were cultured on untreated, 15 and 30 min treated scaffolds. SEM analysis confirmed cell attachment and a pronounced spindle-like morphology on all scaffolds. No significant differences were observed between different scaffolds regarding the amount of DNA, metabolic activity and alkaline phosphatase (ALP) activity after 7 days of culture. The amount of ALP positive cells increased between 7 and 21 days of culture on both untreated and 30 min treated meshes. In addition, ALP staining of cells on plasma treated meshes appeared more pronounced than on untreated meshes after 21 days of culture. Quantitative polymerase chain reaction showed significant upregulation of bone sialoprotein and osteonectin expression on oxygen plasma treated fibres compared to untreated fibres in basic culture medium after 7 days of culture, while no differences were observed in the expression of other osteogenic markers. At 21 days, no osteocalcin protein could be detected by ELISA at any of the substrates. In conclusion, this study shows that oxygen plasma treatment can successfully be applied to modify the nanoscale surface properties of polymeric electrospun fibre meshes, which in turn may positively affect osteogenic differentiation of hMSCs.


Assuntos
Materiais Biocompatíveis/química , Bioengenharia/métodos , Regeneração Óssea , Células-Tronco Mesenquimais/citologia , Plasma/química , Polímeros/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Técnicas de Cultura de Células , Proliferação de Células , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...