Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927098

RESUMO

Cytochrome c (Cytc) is important for both mitochondrial respiration and apoptosis, both of which are altered in cancer cells that switch to Warburg metabolism and manage to evade apoptosis. We earlier reported that lysine 53 (K53) of Cytc is acetylated in prostate cancer. K53 is conserved in mammals that is known to be essential for binding to cytochrome c oxidase and apoptosis protease activating factor-1 (Apaf-1). Here we report the effects of this acetylation on the main functions of cytochrome c by expressing acetylmimetic K53Q in cytochrome c double knockout cells. Other cytochrome c variants analyzed were wild-type, K53R as a control that maintains the positive charge, and K53I, which is present in some non-mammalian species. Intact cells expressing K53Q cytochrome c showed 49% decreased mitochondrial respiration and a concomitant increase in glycolytic activity (Warburg effect). Furthermore, mitochondrial membrane potential was decreased, correlating with notably reduced basal mitochondrial superoxide levels and decreased cell death upon challenge with H2O2 or staurosporine. To test for markers of cancer aggressiveness and invasiveness, cells were grown in 3D spheroid culture. K53Q cytochrome c-expressing cells showed profoundly increased protrusions compared to WT, suggesting increased invasiveness. We propose that K53 acetylation of cytochrome c is an adaptive response that mediates prostate cancer metabolic reprogramming and evasion of apoptosis, which are two hallmarks of cancer, to better promote tumor survival and metastasis.


Assuntos
Apoptose , Citocromos c , Lisina , Neoplasias da Próstata , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Humanos , Citocromos c/metabolismo , Masculino , Acetilação , Lisina/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial , Reprogramação Metabólica
2.
J Strength Cond Res ; 38(7): 1189-1199, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900170

RESUMO

ABSTRACT: Arroum, T, Hish, GA, Burghardt, KJ, Ghamloush, M, Bazzi, B, Mrech, A, Morse, PT, Britton, SL, Koch, LG, McCully, JD, Hüttemann, M, and Malek, MH. Mitochondria transplantation: Rescuing innate muscle bioenergetic impairment in a model of aging and exercise intolerance. J Strength Cond Res 38(7): 1189-1199, 2024-Mitochondria, through oxidative phosphorylation, are crucial for energy production. Disease, genetic impairment, or deconditioning can harm muscle mitochondria, affecting energy production. Endurance training enhances mitochondrial function but assumes mobility. Individuals with limited mobility lack effective treatments for mitochondrial dysfunction because of disease or aging. Mitochondrial transplantation replaces native mitochondria that have been damaged with viable, respiration-competent mitochondria. Here, we used a rodent model selectively bred for low-capacity running (LCR), which exhibits innate mitochondrial dysfunction in the hind limb muscles. Hence, the purpose of this study was to use a distinct breed of rats (i.e., LCR) that display hereditary skeletal muscle mitochondrial dysfunction to evaluate the consequences of mitochondrial transplantation. We hypothesized that the transplantation of mitochondria would effectively alleviate mitochondrial dysfunction in the hind limb muscles of rats when compared with placebo injections. In addition, we hypothesized that rats receiving the mitochondrial transplantation would experience an improvement in their functional capacity, as evaluated through incremental treadmill testing. Twelve aged LCR male rats (18 months old) were randomized into 2 groups (placebo or mitochondrial transplantation). One LCR rat of the same age and sex was used as the donor to isolate mitochondria from the hindlimb muscles. Isolated mitochondria were injected into both hindlimb muscles (quadriceps femoris, tibialis anterior (TA), and gastrocnemius complex) of a subset LCR (n = 6; LCR-M) rats. The remaining LCR (n = 5; LCR-P) subset received a placebo injection containing only the vehicle without the isolated mitochondria. Four weeks after mitochondrial transplantation, rodents were euthanized and hindlimb muscles harvested. The results indicated a significant (p < 0.05) increase in mitochondrial markers for glycolytic (plantaris and TA) and mixed (quadricep femoris) muscles, but not oxidative muscle (soleus). Moreover, we found significant (p < 0.05) epigenetic changes (i.e., hypomethylation) at the global and site-specific levels for a key mitochondrial regulator (transcription factor A mitochondrial) between the placebo and mitochondrial transplantation groups. To our knowledge, this is the first study to examine the efficacy of mitochondrial transplantation in a rodent model of aging with congenital skeletal muscle dysfunction.


Assuntos
Envelhecimento , Metabolismo Energético , Tolerância ao Exercício , Mitocôndrias Musculares , Músculo Esquelético , Animais , Músculo Esquelético/metabolismo , Ratos , Masculino , Envelhecimento/fisiologia , Mitocôndrias Musculares/metabolismo , Tolerância ao Exercício/fisiologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Modelos Animais de Doenças , Membro Posterior , Fosforilação Oxidativa
3.
Cells ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534337

RESUMO

Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.


Assuntos
Citocromos c , Mitocôndrias , Humanos , Fosforilação , Citocromos c/metabolismo , Acetilação , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Apoptose , Respiração , Isquemia/metabolismo
4.
Crit Care ; 27(1): 491, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098060

RESUMO

BACKGROUND: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS: Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS: Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS: NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.


Assuntos
Lesões Encefálicas , Reanimação Cardiopulmonar , Doenças Mitocondriais , Parada Cardíaca Extra-Hospitalar , Humanos , Camundongos , Animais , Suínos , Mitocôndrias , Isquemia , Modelos Animais de Doenças
5.
Nat Commun ; 14(1): 4166, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443314

RESUMO

Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.


Assuntos
Lisina , Traumatismo por Reperfusão , Animais , Suínos , Lisina/metabolismo , Citocromos c/metabolismo , Fosforilação , Acetilação , Processamento de Proteína Pós-Traducional , Apoptose , Respiração Celular/fisiologia , Traumatismo por Reperfusão/metabolismo , Músculo Esquelético/metabolismo
6.
Bioeng Transl Med ; 8(3): e10496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206207

RESUMO

Noninvasive delivery of near-infrared light (IRL) to human tissues has been researched as a treatment for several acute and chronic disease conditions. We recently showed that use of specific IRL wavelengths, which inhibit the mitochondrial enzyme cytochrome c oxidase (COX), leads to robust neuroprotection in animal models of focal and global brain ischemia/reperfusion injury. These life-threatening conditions can be caused by an ischemic stroke or cardiac arrest, respectively, two leading causes of death. To translate IRL therapy into the clinic an effective technology must be developed that allows efficient delivery of IRL to the brain while addressing potential safety concerns. Here, we introduce IRL delivery waveguides (IDWs) which meet these demands. We employ a low-durometer silicone that comfortably conforms to the shape of the head, avoiding pressure points. Furthermore, instead of using focal IRL delivery points via fiberoptic cables, lasers, or light-emitting diodes, the distribution of the IRL across the entire area of the IDW allows uniform IRL delivery through the skin and into the brain, preventing "hot spots" and thus skin burns. The IRL delivery waveguides have unique design features, including optimized IRL extraction step numbers and angles and a protective housing. The design can be scaled to fit various treatment areas, providing a novel IRL delivery interface platform. Using fresh (unfixed) human cadavers and isolated cadaver tissues, we tested transmission of IRL via IDWs in comparison to laser beam application with fiberoptic cables. Using the same IRL output energies IDWs performed superior in comparison to the fiberoptic delivery, leading to an up to 95% and 81% increased IRL transmission for 750 and 940 nm IRL, respectively, analyzed at a depth of 4 cm into the human head. We discuss the unique safety features and potential further improvements of the IDWs for future clinical implementation.

7.
Antioxidants (Basel) ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275639

RESUMO

The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the oxidative phosphorylation complexes. In this study, we analyzed liver mitochondria of Cohen diabetes-sensitive (CDs) and Cohen diabetes-resistant (CDr) rats, using blue native gel electrophoresis (BN-PAGE) in combination with mitochondrial activity measurements and a site-specific tyrosine phosphorylation implicated in inflammation, a known driver of diabetes pathology. We uncovered the presence of a specific inhibitory phosphorylation on tyrosine 304 of catalytic subunit I of dimeric cytochrome c oxidase (CcO, complex IV). Driven by a high sucrose diet in both CDr and CDs rats, Y304 phosphorylation, which occurs close to the catalytic oxygen binding site, correlates with a decrease in CcO activity and respiratory dysfunction in rat liver tissue under hyperglycemic conditions. We propose that this phosphorylation, specifically seen in dimeric CcO and induced by high sucrose diet-mediated inflammatory signaling, triggers enzymatic activity decline of complex IV dimers and the assembly of supercomplexes in liver tissue as a molecular mechanism underlying a (pre-)diabetic phenotype.

8.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36378644

RESUMO

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Assuntos
Citocromos c , Heme , Animais , Sequência de Aminoácidos , Anticorpos Monoclonais , Citocromos c/química , Heme/química , Hibridomas , Oxirredução , Melanoma Experimental , Camundongos
9.
Biochem Soc Trans ; 50(5): 1377-1388, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36066188

RESUMO

Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury. Mitochondria play a crucial role in early ischemia-reperfusion injury due to the generation of reactive oxygen species (ROS). During ischemia, mitochondria sense energy depletion and futilely attempt to up-regulate energy production. When reperfusion occurs, mitochondria become hyperactive and produce large amounts of ROS which damages neuronal tissue. This ROS burst damages mitochondria and the cell, which results in an eventual decrease in mitochondrial activity and pushes the fate of the cell toward death. This review covers the relationship between the mitochondrial membrane potential (ΔΨm) and ROS production. We also discuss physiological mechanisms that couple mitochondrial energy production to cellular energy demand, focusing on serine 47 dephosphorylation of cytochrome c (Cytc) in the brain during ischemia, which contributes to ischemia-reperfusion injury. Finally, we discuss the use of near infrared light (IRL) to treat stroke. IRL can both stimulate or inhibit mitochondrial activity depending on the wavelength. We emphasize that the use of the correct wavelength is crucial for outcome: inhibitory IRL, applied early during reperfusion, can prevent the ROS burst from occurring, thus preserving neurological tissue.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Mitocôndrias/metabolismo , Reperfusão , Isquemia/metabolismo , Acidente Vascular Cerebral/metabolismo
10.
Metabolism ; 135: 155275, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932995

RESUMO

INTRODUCTION: Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism and energy production. NAD+-dependent deacetylase sirtuin 3 (SIRT3) regulates the acetylation levels of mitochondrial proteins that are involved in mitochondrial homeostasis. Fasting up-regulates hepatic SIRT3 activity, which requires mitochondrial NAD+. What is the mechanism, then, to transport more NAD+ into mitochondria to sustain enhanced SIRT3 activity during fasting? OBJECTIVE: SLC25A51 is a recently discovered mitochondrial NAD+ transporter. We tested the hypothesis that, during fasting, increased expression of SLC25A51 is needed for enhanced mitochondrial NAD+ uptake to sustain SIRT3 activity. Because the fasting-fed cycle and circadian rhythm are closely linked, we further tested the hypothesis that SLC25A51 is a circadian regulated gene. METHODS: We examined Slc25a51 expression in the liver of fasted mice, and examined its circadian rhythm in wild-type mice and those with liver-specific deletion of the clock gene BMAL1 (LKO). We suppressed Slc25a51 expression in hepatocytes and the mouse liver using shRNA-mediated knockdown, and then examined mitochondrial NAD+ levels, SIRT3 activities, and acetylation levels of SIRT3 target proteins (IDH2 and ACADL). We measured mitochondrial oxygen consumption rate using Seahorse analysis in hepatocytes with reduced Slc25a51 expression. RESULTS: We found that fasting induced the hepatic expression of Slc25a51, and its expression showed a circadian rhythm-like pattern that was disrupted in LKO mice. Reduced expression of Slc25a51 in hepatocytes decreased mitochondrial NAD+ levels and SIRT3 activity, reflected by increased acetylation of SIRT3 targets. Slc25a51 knockdown reduced the oxygen consumption rate in intact hepatocytes. Mice with reduced Slc25a51 expression in the liver manifested reduced hepatic mitochondrial NAD+ levels, hepatic steatosis and hypertriglyceridemia. CONCLUSIONS: Slc25a51 is a fasting-induced gene that is needed for hepatic SIRT3 functions.


Assuntos
Sirtuína 3 , Animais , Camundongos , Acetilação , Jejum/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
11.
Cells ; 10(4)2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916826

RESUMO

Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome c (Cytc) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria. However, its functional role in cancer has never been studied. Our data show that Cytc is acetylated on lysine 53 in both androgen hormone-resistant and -sensitive human prostate cancer xenografts. To characterize the functional effects of K53 modification in vitro, K53 was mutated to acetylmimetic glutamine (K53Q), and to arginine (K53R) and isoleucine (K53I) as controls. Cytochrome c oxidase (COX) activity analyzed with purified Cytc variants showed reduced oxygen consumption with acetylmimetic Cytc compared to the non-acetylated Cytc (WT), supporting the Warburg effect. In contrast to WT, K53Q Cytc had significantly lower caspase-3 activity, suggesting that modification of Cytc K53 helps cancer cells evade apoptosis. Cardiolipin peroxidase activity, which is another proapoptotic function of the protein, was lower in acetylmimetic Cytc. Acetylmimetic Cytc also had a higher capacity to scavenge reactive oxygen species (ROS), another pro-survival feature. We discuss our experimental results in light of structural features of K53Q Cytc, which we crystallized at a resolution of 1.31 Å, together with molecular dynamics simulations. In conclusion, we propose that K53 acetylation of Cytc affects two hallmarks of cancer by regulating respiration and apoptosis in prostate cancer xenografts.


Assuntos
Apoptose , Citocromos c/metabolismo , Lisina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Efeito Warburg em Oncologia , Acetilação , Animais , Cardiolipinas , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Camundongos , Simulação de Dinâmica Molecular , Mutação/genética , Oxirredução , Consumo de Oxigênio , Peroxidase/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
IUBMB Life ; 73(3): 554-567, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166061

RESUMO

Near-infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX-inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death. Prior to clinical application of IRL on humans, IRL penetration must be tested, which may be wavelength dependent. In the present study, four fresh (unfixed) cadavers and isolated cadaver tissues were used to examine the transmission of infrared light through human biological tissues. We conclude that the transmission of 750 and 940 nm IRL through 4 cm of cadaver head supports the viability of IRL to treat human brain ischemia/reperfusion injury and is similar for skin with different skin pigmentation. We discuss experimental difficulties of working with fresh cadavers and strategies to overcome them as a guide for future studies.


Assuntos
Encéfalo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fototerapia/instrumentação , Fototerapia/métodos , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Cadáver , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Desenho de Equipamento , Feminino , Humanos , Raios Infravermelhos , Pessoa de Meia-Idade , Fibras Ópticas , Traumatismo por Reperfusão/terapia , Pele/química
13.
Cells ; 9(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781572

RESUMO

We previously reported that serine-47 (S47) phosphorylation of cytochrome c (Cytc) in the brain results in lower cytochrome c oxidase (COX) activity and caspase-3 activity in vitro. We here analyze the effect of S47 modification in fibroblast cell lines stably expressing S47E phosphomimetic Cytc, unphosphorylated WT, or S47A Cytc. Our results show that S47E Cytc results in partial inhibition of mitochondrial respiration corresponding with lower mitochondrial membrane potentials (ΔΨm) and reduced reactive oxygen species (ROS) production. When exposed to an oxygen-glucose deprivation/reoxygenation (OGD/R) model simulating ischemia/reperfusion injury, the Cytc S47E phosphomimetic cell line showed minimal ROS generation compared to the unphosphorylated WT Cytc cell line that generated high levels of ROS upon reoxygenation. Consequently, the S47E Cytc cell line also resulted in significantly lower cell death upon exposure to OGD/R, confirming the cytoprotective role of S47 phosphorylation of Cytc. S47E Cytc also resulted in lower cell death upon H2O2 treatment. Finally, we propose that pro-survival kinase Akt (protein kinase B) is a likely mediator of the S47 phosphorylation of Cytc in the brain. Akt inhibitor wortmannin abolished S47 phosphorylation of Cytc, while the Akt activator SC79 maintained S47 phosphorylation of Cytc. Overall, our results suggest that loss of S47 phosphorylation of Cytc during brain ischemia drives reperfusion injury through maximal electron transport chain flux, ΔΨm hyperpolarization, and ROS-triggered cell death.


Assuntos
Encéfalo/metabolismo , Morte Celular , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Apoptose , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citocromos c/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial , Camundongos , Fosforilação , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
14.
Int J Biochem Cell Biol ; 121: 105704, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023432

RESUMO

Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.


Assuntos
Citocromos c/metabolismo , Transporte de Elétrons/genética , Apoptose , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...