Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur Radiol Exp ; 3(1): 7, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30725241

RESUMO

BACKGROUND: To investigate the feasibility of compressed sensing and parallel imaging (CS-PI)-accelerated bowel motility magnetic resonance imaging (MRI) and to compare its image quality and diagnostic quality to conventional sensitivity encoding (SENSE) accelerated scans. METHODS: Bowel MRI was performed in six volunteers using a three-dimensional balanced fast field-echo sequence. Static scans were performed after the administration of a spasmolytic agent to prevent bowel motion artefacts. Fully sampled reference scans and multiple prospectively 3× to 7× undersampled CS-PI and SENSE scans were acquired. Additionally, fully sampled CS-PI and SENSE scans were retrospectively undersampled and reconstructed. Dynamic scans were performed using 5× to 7× accelerated scans in the presence of bowel motion. Retrospectively, undersampled scans were compared to fully sampled scans using structural similarity indices. All reconstructions were visually assessed for image quality and diagnostic quality by two radiologists. RESULTS: For static imaging, the performance of CS-PI was lower than that of fully sampled and SENSE scans: the diagnostic quality was assessed as adequate or good for 100% of fully sampled scans, 95% of SENSE, but only for 55% of CS-PI scans. For dynamic imaging, CS-PI image quality was scored similar to SENSE at high acceleration. Diagnostic quality of all scans was scored as adequate or good; 55% of CS-PI and 83% of SENSE scans were scored as good. CONCLUSION: Compared to SENSE, current implementation of CS-PI performed less or equally good in terms of image quality and diagnostic quality. CS-PI did not show advantages over SENSE for three-dimensional bowel motility imaging.

2.
J Cardiovasc Magn Reson ; 19(1): 39, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359292

RESUMO

BACKGROUND: Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its performance in healthy mice by comparing the results with those obtained with an ECG-triggered 4D PC fast low angle shot (FLASH) sequence. METHODS: Cardiac 4D PC CMR images were acquired at 9.4 T in healthy mice using the proposed self-gated radial center-out UTE acquisition scheme (TE/TR of 0.5 ms/3.1 ms) and a standard Cartesian 4D PC imaging sequence (TE/TR of 2.1 ms/5.0 ms) with a four-point Hadamard flow encoding scheme. To validate the proposed UTE flow imaging technique, experiments on a flow phantom with variable pump rates were performed. RESULTS: The anatomical images and flow velocity maps of the proposed 4D PC UTE technique showed reduced artifacts and an improved SNR (left ventricular cavity (LV): 8.9 ± 2.5, myocardium (MC): 15.7 ± 1.9) compared to those obtained using a typical Cartesian FLASH sequence (LV: 5.6 ± 1.2, MC: 10.1 ± 1.4) that was used as a reference. With both sequences comparable flow velocities were obtained in the flow phantom as well as in the ascending aorta (UTE: 132.8 ± 18.3 cm/s, FLASH: 134.7 ± 13.4 cm/s) and pulmonary artery (UTE: 78.5 ± 15.4 cm/s, FLASH: 86.6 ± 6.2 cm/s) of the animals. Self-gated navigator signals derived from information of the oversampled k-space center were successfully extracted for all animals with a higher gating efficiency of time spent on acquiring gated data versus total measurement time (UTE: 61.8 ± 11.5%, FLASH: 48.5 ± 4.9%). CONCLUSIONS: The proposed self-gated 4D PC UTE sequence enables robust and accurate flow velocity mapping of the mouse heart in vivo at high magnetic fields. At the same time SNR, gating efficiency, flow artifacts and image quality all improved compared to the images obtained using the well-established, ECG-triggered, 4D PC FLASH sequence.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Animais , Artefatos , Velocidade do Fluxo Sanguíneo , Técnicas de Imagem de Sincronização Cardíaca/instrumentação , Circulação Coronária , Eletrocardiografia , Frequência Cardíaca , Imagem Cinética por Ressonância Magnética/instrumentação , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Imagens de Fantasmas , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...