Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Dement ; 3: 1458038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221072

RESUMO

Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.

2.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39009412

RESUMO

Treatments for Alzheimer's disease have primarily focused on removing brain amyloid plaques to improve cognitive outcomes in patients. We developed small compounds, known as BK40143 and BK40197, and we hypothesize that these drugs alleviate microglial-mediated neuroinflammation and induce autophagic clearance of neurotoxic proteins to improve behavior in models of neurodegeneration. Specificity binding assays of BK40143 and BK40197 showed primary binding to c-KIT/Platelet Derived Growth Factor Receptors (PDGFR)α/ß, whereas BK40197 also differentially binds to FYVE finger-containing phosphoinositide kinase (PIKFYVE). Both compounds penetrate the CNS, and treatment with these drugs inhibited the maturation of peripheral mast cells in transgenic mice, correlating with cognitive improvements on measures of memory and anxiety. In the brain, microglial activation was profoundly attenuated and amyloid-beta and tau were reduced via autophagy. Multi-kinase inhibition, including c-KIT, exerts multifunctional effects to reduce neurodegenerative pathology via autophagy and microglial activity and may represent a potential therapeutic option for neurodegeneration.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Proteínas Proto-Oncogênicas c-kit , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Autofagia/efeitos dos fármacos , Humanos , Peptídeos beta-Amiloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Proteínas tau/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Masculino
3.
J Neuroinflammation ; 20(1): 116, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194065

RESUMO

Discoidin Domain Receptor (DDR)-1 is activated by collagen. Nilotinib is a tyrosine kinase inhibitor that is FDA-approved for leukemia and potently inhibits DDR-1. Individuals diagnosed with mild-moderate Alzheimer's disease (AD) treated with nilotinib (versus placebo) for 12 months showed reduction of amyloid plaque and cerebrospinal fluid (CSF) amyloid, and attenuation of hippocampal volume loss. However, the mechanisms are unclear. Here, we explored unbiased next generation whole genome miRNA sequencing from AD patients CSF and miRNAs were matched with their corresponding mRNAs using gene ontology. Changes in CSF miRNAs were confirmed via measurement of CSF DDR1 activity and plasma levels of AD biomarkers. Approximately 1050 miRNAs are detected in the CSF but only 17 miRNAs are specifically altered between baseline and 12-month treatment with nilotinib versus placebo. Treatment with nilotinib significantly reduces collagen and DDR1 gene expression (upregulated in AD brain), in association with inhibition of CSF DDR1. Pro-inflammatory cytokines, including interleukins and chemokines are reduced along with caspase-3 gene expression. Specific genes that indicate vascular fibrosis, e.g., collagen, Transforming Growth Factors (TGFs) and Tissue Inhibitors of Metalloproteases (TIMPs) are altered by DDR1 inhibition with nilotinib. Specific changes in vesicular transport, including the neurotransmitters dopamine and acetylcholine, and autophagy genes, including ATGs, indicate facilitation of autophagic flux and cellular trafficking. Inhibition of DDR1 with nilotinib may be a safe and effective adjunct treatment strategy involving an oral drug that enters the CNS and adequately engages its target. DDR1 inhibition with nilotinib exhibits multi-modal effects not only on amyloid and tau clearance but also on anti-inflammatory markers that may reduce cerebrovascular fibrosis.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Receptores com Domínio Discoidina , Pirimidinas/farmacologia , Colágeno/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico
4.
Cureus ; 15(3): e35756, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020478

RESUMO

The sigma-1 and sigma-2 receptors were first discovered in the 1960s and were thought to be a form of opioid receptors initially. Over time, more was gradually learned about these receptors, which are actually protein chaperones, and many of their unique or unusual properties can contribute to a range of important new therapeutic applications. These sigma receptors translocate in the body and regulate calcium homeostasis and mitochondrial bioenergetics and they also have neuroprotective effects. The ligands to which these sigma receptors respond are several and dissimilar, including neurosteroids, neuroleptics, and cocaine. There is controversy as to their endogenous ligands. Sigma receptors are also involved in the complex processes of cholesterol homeostasis and protein folding. While previous work on this topic has been limited, research has been conducted in multiple disease states, such as addiction, aging. Alzheimer's disease, cancer, psychiatric disorders, pain and neuropathic pain, Parkinson's disease, and others. There is currently increasing interest in sigma-1 and sigma-2 receptors as they provide potential therapeutic targets for many disease indications.

7.
Metabolites ; 12(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36557263

RESUMO

Nilotinib is a tyrosine kinase inhibitor that is safe and tolerated in neurodegeneration, it achieves CSF concentration that is adequate to inhibit discoidin domain receptor (DDR)-1. Nilotinib significantly affects dopamine metabolites, including Homovanillic acid (HVA), resulting in an increase in brain dopamine. HD is a hereditary disease caused by mutations in the Huntingtin's (HTT) gene and characterized by neurodegeneration and motor and behavioral symptoms that are associated with activation of dopamine receptors. We explored the effects of a low dose of nilotinib (150 mg) on behavioral changes and motor symptoms in manifest HD patients and examined the effects of nilotinib on several brain mechanisms, including dopamine transmission and gene expression via cerebrospinal fluid (CSF) miRNA sequencing. Nilotinib, 150 mg, did not result in any behavioral changes, although it significantly attenuated HVA levels, suggesting reduction of dopamine catabolism. There was no significant change in HTT, phosphorylated neuro-filament and inflammatory markers in the CSF and plasma via immunoassays. Whole miRNA genome sequencing of the CSF revealed significant longitudinal changes in miRNAs that control specific genes associated with autophagy, inflammation, microglial activity and basal ganglia neurotransmitters, including dopamine and serotonin.

8.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897705

RESUMO

Ubiquitin-Specific Protease-13 (USP13) promotes protein de-ubiquitination. USP13 levels are upregulated in post-mortem Parkinson's disease, whereas USP13 knockdown via shRNA reduces alpha-synuclein levels in animal models. We studied the role of USP13 in knockout mice expressing lentiviral human alpha-synuclein and investigated the impact of a small molecule inhibitor of USP13, BK50118-C, on alpha-synuclein pathology and animal behavior. Alpha-synuclein was expressed unilaterally in substantia nigra (SN) of USP13 deficient mice that were treated with a daily intraperitoneal injection of 100 mg/kg BK50118-C or DMSO for four consecutive weeks, and behavioral and functional assays were performed. Wild-type USP13+/+ mice expressing lentiviral human alpha-synuclein showed motor and behavioral defects that were not seen in partially (USP13+/-) or completely (USP13-/-) deficient USP13 mice. BK50118-C displayed a wide and favorable therapeutic dose range in vivo. Treatment with BK50118-C significantly reduced ubiquitinated alpha-synuclein, increased dopamine levels, and improved motor and behavioral symptoms in wild-type (USP13+/+), but not USP13 deficient, mice. These data suggest that USP13 is critical to the neuropathology of alpha-synuclein, whereas a novel small molecule inhibitor of USP13 is a potential therapeutic agent of alpha-synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo
9.
Alzheimers Dement (N Y) ; 8(1): e12296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662832

RESUMO

Introduction: Bosutinib, a dual Abelson/Src inhibitor, was investigated in individuals with dementia with Lewy bodies (DLB). Methods: A single site, randomized, double-blind, placebo-controlled study of the effects of oral bosutinib, 100 mg once daily for 12 weeks on primary safety and pharmacokinetics and secondary biomarker outcomes. Results: Twenty-six participants were randomized and included male and female (12:1) in the bosutinib arm and all male (13) in the placebo arm. The average age was 72.9 ± 8.1 (year ± standard deviation). There were no serious adverse events and no dropouts. Bosutinib was measured in the cerebrospinal fluid (CSF) and inhibited Abelson. Bosutinib reduced CSF alpha-synuclein and dopamine catabolism. Discussion: Bosutinib is safe and well tolerated and penetrates the blood-brain barrier to inhibit Abelson and reduce CSF alpha-synuclein and dopamine catabolism, suggesting that bosutinib (100 mg) may be at or near the lowest effective dose in DLB. These results will guide adequately powered studies to determine the efficacy of a dose range of bosutinib and longer treatment in DLB. Highlights: Bosutinib is a dual Abl/Src inhibitor that penetrates the blood brain barrierBosutinib is safe and tolerated in individuals with dementia with Lewy bodiesBosutinib engages its target via inhibition of Abl and SrcBosutinib reduces CSF alpha-synuclein and attenuates breakdown of dopamineBosutinib improves activities of daily living in dementia with Lewy bodies.

11.
Neurol Genet ; 7(6): e633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786477

RESUMO

BACKGROUND AND OBJECTIVES: We assessed longitudinal changes in CSF microRNAs (miRNAs) in patients with moderately severe Parkinson disease. METHODS: We used next-generation whole-genome miRNA sequencing to determine CSF miRNA expression in 75 patients with Parkinson disease after single random ascending doses of nilotinib and longitudinal miRNA expression after daily nilotinib, 150 and 300 mg, vs placebo for 1 year. RESULTS: Significant changes in the expression of miRNAs that control genes and pathways that regulate angiogenesis, autophagy, and the blood-brain-barrier components, primarily collagen, were observed over 1 year, suggesting impairment of these pathways in Parkinson progression in these patients. Different miRNAs that indicate activation of genes associated with autophagy flux and clearance and angiogenesis were significantly altered in the nilotinib, 300 mg vs 150 mg, or placebo group, and these changes correlated with clinical outcomes. No changes were observed in miRNAs after a single dose of nilotinib vs placebo. DISCUSSION: This study suggests vascular and autophagy defects in Parkinson progression. Nilotinib, 300 mg, reverses these effects via alteration of miRNA expression, suggesting epigenomic changes that may underlie long-term disease-modifying effects. TRIAL REGISTRATION INFORMATION: Clinical trial registration number: NCT02954978.

12.
Metabolites ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564439

RESUMO

Ubiquitin Specific Protease-13 (USP13) promotes protein de-ubiquitination and is poorly understood in neurodegeneration. USP13 is upregulated in Alzheimer's disease (AD) and Parkinson's disease (PD), and USP13 knockdown via shRNA reduces neurotoxic proteins and increases proteasome activity in models of neurodegeneration. We synthesized novel analogues of spautin-1 which is a non-specific USP13 inhibitor but unable to penetrate the brain. Our synthesized small molecule compounds are able to enter the brain, more potently inhibit USP13, and significantly reduce alpha-synuclein levels in vivo and in vitro. USP13 inhibition in transgenic mutant alpha-synuclein (A53T) mice increased the ubiquitination of alpha-synuclein and reduced its protein levels. The data suggest that novel USP13 inhibitors improve neurodegenerative pathology via antagonism of de-ubiquitination, thus alleviating neurotoxic protein burden in neurodegenerative diseases.

14.
Neuroscience ; 460: 161-166, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577955

RESUMO

Ubiquitin Specific Protease (USP)-13 is a de-ubiquitinase member of the cysteine-dependent protease superfamily that cleaves ubiquitin off protein substrates to reverse ubiquitin-mediated protein degradation. Several findings implicate USPs in neurodegeneration. Ubiquitin targets proteins to major degradation pathways, including the proteasome and the lysosome. In melanoma cells, USP13 regulates the degradation of several proteins primarily via ubiquitination and de-ubiquitination. However, the significance of USP13 in regulating protein clearance in neurodegeneration is largely unknown. This mini-review summarizes the most recent evidence pertaining to the role of USP13 in protein clearance via autophagy and the proteasome in neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Autofagia , Endopeptidases , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação
15.
Front Neurol ; 12: 805135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173668

RESUMO

The Lewy Body Dementia Association (LBDA) held a virtual event, the LBDA Biofluid/Tissue Biomarker Symposium, on January 25, 2021, to present advances in biomarkers for Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD). The meeting featured eight internationally known scientists from Europe and the United States and attracted over 200 scientists and physicians from academic centers, the National Institutes of Health, and the pharmaceutical industry. Methods for confirming and quantifying the presence of Lewy body and Alzheimer's pathology and novel biomarkers were discussed.

16.
Mov Disord ; 36(3): 740-749, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33215762

RESUMO

BACKGROUND: Nilotinib is US Food and Drug Administration-approved for leukemia, and this open-label study investigated the safety, tolerability, and potential clinical effects of nilotinib in medically optimized patients with Parkinson's disease. OBJECTIVES: Safety and tolerability were the primary objectives, and clinical outcomes were exploratory. METHODS: A total of 63 patients completed a 15-month phase 2, double-blind, placebo-controlled study and were rerandomized 1:1 into an open-label study of nilotinib 150 mg versus 300 mg for 12 months. RESULTS: Nilotinib was safe and tolerated, and no adverse effects seemed to be related to the drug, and no differences in adverse events were observed between groups. Exploratory clinical outcomes showed that nilotinib 300 mg was remarkably stable from baseline to 27 months using partial and total Unified Parkinson's Disease Scale (UPDRS). Nilotinib 150 mg versus 300 mg, significantly declined using partial or the sum of UPDRS Parts I and II. There was no significant difference in nilotinib 150 mg versus 300 mg using UPDRS Part III (on levodopa) and total UPDRS Parts I to III. Subgroup analysis showed that late-start nilotinib 150 mg significantly worsened using the sum of UPDRS Parts II + III and total UPDRS Parts I to III compared with late-start nilotinib 300 mg. Quality of life using the Parkinson's Disease Questionnaire in nilotinib 150 mg significantly declined between 15 and 27 months compared with nilotinib 300 mg, and there was no change in cognition using the Montreal Cognitive Assessment between groups. CONCLUSIONS: This study provides evidence that nilotinib is safe and tolerated in Parkinson's disease. The exploratory clinical data will inform an adequately powered larger study to evaluate the efficacy of nilotinib 300 mg in Parkinson's disease. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , Humanos , Levodopa , Doença de Parkinson/tratamento farmacológico , Pirimidinas , Qualidade de Vida
18.
Neuropsychologia ; 148: 107633, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971096

RESUMO

Parkinson's disease (PD), which involves basal ganglia degeneration, affects language as well as motor function. However, which aspects of language are impaired in PD and under what circumstances remains unclear. We examined whether lexical and grammatical aspects of language are differentially affected in PD, and whether this dissociation is moderated by sex as well as the degree of basal ganglia degeneration. Our predictions were based on the declarative/procedural model of language. The model posits that grammatical composition, including in regular inflection, depends importantly on left basal ganglia procedural memory circuits, whereas irregular and other lexicalized forms are memorized in declarative memory. Since females tend to show declarative memory advantages as compared to males, the model further posits that females should tend to rely on this system for regulars, which can be stored as lexicalized chunks. We tested non-demented male and female PD patients and healthy control participants on the intensively studied paradigm of English regular and irregular past-tense production. Mixed-effects regression revealed PD deficits only at regular inflection, only in male patients. The degree of left basal ganglia degeneration, as reflected by right-side hypokinesia, predicted only regular inflection, and only in male patients. Left-side hypokinesia did not show this pattern. Past-tense frequency effects suggested that the female patients retrieved regular as well as irregular past-tense forms from declarative memory, whereas the males retrieved only irregulars. Sensitivity analyses showed that the pattern of findings was robust. The results, which are consistent with the declarative/procedural model, suggest a grammatical deficit in PD due to left basal ganglia degeneration, with a relative sparing of lexical retrieval. Female patients appear to compensate for this deficit by relying on chunks stored in declarative memory. More generally, the study elucidates the neurocognition of inflectional morphology and provides evidence that sex can influence how language is computed in the mind and brain.


Assuntos
Idioma , Doença de Parkinson , Feminino , Humanos , Hipocinesia , Testes de Linguagem , Masculino , Memória , Doença de Parkinson/complicações
19.
Hum Mol Genet ; 29(17): 2882-2898, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32776088

RESUMO

The role of Discoidin Domain Receptors (DDRs) is poorly understood in neurodegeneration. DDRs are upregulated in Alzheimer's and Parkinson's disease (PD), and DDRs knockdown reduces neurotoxic protein levels. Here we show that potent and preferential DDR1 inhibitors reduce neurotoxic protein levels in vitro and in vivo. Partial or complete deletion or inhibition of DDR1 in a mouse model challenged with α-synuclein increases autophagy and reduces inflammation and neurotoxic proteins. Significant changes of cerebrospinal fluid microRNAs that control inflammation, neuronal injury, autophagy and vesicular transport genes are observed in PD with and without dementia and Lewy body dementia, but these changes are attenuated or reversed after treatment with the DDR1 inhibitor, nilotinib. Collectively, these data demonstrate that DDR1 regulates autophagy and reduces neurotoxic proteins and inflammation and is a therapeutic target in neurodegeneration.


Assuntos
Receptor com Domínio Discoidina 1/genética , Doença por Corpos de Lewy/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Camundongos , MicroRNAs/genética , Doenças Neurodegenerativas/patologia , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/patologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...